

- □ LAN Emulation
- □ Network Interfaces

□ Labels vs addresses

 \Rightarrow Better scalability in number of nodes

- $\Box Slotted system \Rightarrow Better scalability in distance-bandwidth$
- □ Switches vs routers
 - \Rightarrow Cheaper due to fixed size, short address, simplicity
- $\Box Seamless \Rightarrow Same technology for LAN, MAN, WAN$
- Data, voice, video integration
- □ Everyone else is doing it

History of ATM

□ 1980: Narrowband ISDN adopted □ Early 80's: Research on Fast Packets □ Mid 80's: B-ISDN Study Group formed □ 1988: ATM chosen for B-ISDN □ June 1989: 48+5 chosen (64+5 vs 32+4) □ October 1991: ATM Forum founded □ July 1992: UNI V2 released by ATM Forum □ 1993: UNI V3 and DXI V1 □ 1994: B-ICI V1

ATM Network Interfaces

- User to Network Interface (UNI):
 Public UNI, Private UNI
- □ Network to Node Interface (NNI):
 - Private NNI (P-NNI)
 - Public NNI = Inter-Switching System Interface (ISSI) Intra-LATA ISSI (Regional Bell Operating Co)
 - ◆ Inter-LATA ISSI (Inter-exchange Carriers)
 ⇒Broadband Inter-Carrier Interface (B-ICI)

Data Exchange Interface (DXI)
 Between packet routers and ATM Digital Service Units (DSU)

Protocol Layers

- □ The ATM Adaptation Layer
 - How to break application messages to cells
- □ The ATM Layer
 - Transmission/Swiching/Reception
 - Congestion Control/Buffer management
 - Cell header generation/removal at source/destination
 - Reset connection identifiers for the next hop (at switch)
 - Cell address translation
 - Sequential delivery

Original Classes of Traffic

	Class A	Class B	Class C	Class D	
Time	Rec	quired	Not Required		
Synch					
Bit Rate	Constant				
Connection	Connectio	Connect			
Mode	Connection	ionless			
AAL	AAL 1	AAL 2	AAL 3/4/5	AAL 3/4/5	
Examples	Circuit	Compressed	Frame	SMDS	
	emulation	Video	Relay		

AAL 5

- Designed for data traffic
- □ Less overhead bits than AAL 3/4⇒ Simple and Efficient AAL (SEAL)
- □ No per cell length field, No per cell CRC

ATM Cell Header Format

□ GFC=Generic Flow Control

• (Was used in UNI but not in NNI)

 $\Box \quad VPI/VCI=0/0 \Rightarrow Idle cell; 0/n \Rightarrow Signalling$

u HEC: $1 + x + x^2 + x^8$

	GFC/VPI VPI]	
	VPI	V	VCI	
	VCI	PTI	CLP	
	Header Erro	or Check (HEO	C)	
	Pa	Payload		
The Ohio Stat	e University			Raj Jain

Connection Identifiers

- Each cell contains a 24/28-bit connection identifier
 First 8/12 bits: Virtual Path, Last 16 bits: Virtual Circuit
- □ VP service allows new VC's w/o orders to carriers

ATMHost Protocol Layer					ers	LAN Host		
Existing						Existing Applications		
IP	IPX	ATM-LAN Bridge				IP	IPX	
NDIS	ODI	Bridging				NDIS	ODI	
LAN Emulation				LAN Emulation	Media	Media		
AAL5		ATM Switch		AAL5	Access Control	Acce	ess trol	
ATM		ATM		ATM	Control			
Physical Layer		Physical Layer	Physical Layer	Physical Layer	Physical Layer	Physical Layer		
□ NDIS = Network Driver Interface Specification								

 \Box ODI = Open Datalink Interface

The Ohio State University

Raj Jain

Features

- □ One ATM LAN can be multiple virtual LANs
- □ Logical subnets interconnected via routers
- □ Need drivers in hosts to support each LAN
- □ Only IEEE 802.3 and IEEE 802.5 frame formats supported
- Doesn't allow passive monitoring

No token management (SMT), collisions, beacon frames

LE Header (2 Bytes) Standard IEEE 802.3 or 802.5 Frame

Operation

- Initialization: Client gets Server's address from a well known ATM address
- Registration: Client sends a list of its MAC addresses to Server
- Address Resolution: Client sends ARP request to Server
 - Server, Clients, Bridges answer ARP
 - ♦ Client setups a direct connection
- Broadcast/Unknown Server (BUS):
 Forwards multicast traffic to all members

Physical Media Dependent Layers (PMDs)

- Multimode Fiber: 100 Mbps using 4b/5b (TAXI), 155 Mbps SONET STS-3c, 155 Mbps 8b/10b
- □ Single-mode Fiber: 155 Mbps SONET STS-3c
- □ Shielded Twisted Pair (STP): 155 Mbps 8b/10b
- □ Coax: 45 Mbps, DS3
- □ Unshielded Twisted Pair (UTP)
 - UTP-3 (phone wire) at 51.84 Mbps, CAP-16 coding
 - UTP-5 (Data grade UTP) at 155 Mbps, NRZI coding

- □ ATM Overview: History, Why and What
- □ Interfaces: PNNI, NNI, B-ICI, DXI
- Derived Protocol Layers: AAL, ATM, Physical layers, Cell format
- □ LAN Emulation
- □ IP over ATM

References

- □ R, Handel, M. Huber, and S. Schroder, *ATM Networks*, Addison-Wesley, 1994.
- D.E. McDysan and D.L. Spohn, ATM: Theory and Applications, McGraw-Hill, 1994
- □ L.G. Cuthbert and J-C Sapanel, *ATM: The broadband Telecommunication Solution* IEE 1993, London, 161 pp.
- David Benham, ATM in Local Area Networks, 11 April 1994, Hughes LAN Systems, (800)395-LANs, (415)966-7300.
- Communications of ACM, Special issue on ATM, February 1995
- Presentation ATM Basics, ATM Forum, Fax on demand (415)-688-4318, Document #5007, 8 pp.

□ Computer based training (CBT) diskettes, ATM Forum

The Ohio State University

Raj Jain

References

- □ RFC 1577, "*Classical IP and ARP over ATM*" by M. Laubach, January 1994.
- RFC 1483, "Multiprotocol Encapsulation over ATM Adaptation Layer 5" by J. Heinanen, July 1993.
- □ User-Network Interface Specifications, V3.0, Prentice-Hall, September 10, 1993., (515)-284-6751
- □ From ATM Forum, (415)-578-6860
 - ◆ B-ICI V1.1
 - ♦ DXI V1
 - ◆ DS1 Phy V1.0
 - ◆ 52 Mb/s Category 3 UTP
 - ◆ 155 Mb/s Category 5 UTP

Information Sources

- □ ATM Forum (415)578-6860 info@atmforum.com
 - http://www.atmforum.com
- □ Internet Engineering Task Force
 - ◆ IP over ATM: atm-request@hpl.hp.com
 - Routing over Large Clouds: rolcrequest@nsco.netcom.com
 - atommib-request@thumper.bellcore.com
 - RFCs: mail-server@nisc.sri.com (Send Help in message)
 - Draft RFC's: Internet-Drafts@cnri.reston.va.us
- □ Internet News: cell-relay-request@indiana.edu
 - comp.dcom.cell-relay@indiana.edu
- □ International Telecommunications Union (ITU)