Traffic Management								
over Satellite ATM								
Networks:								
Recent Issues								
Raj Jain								
The Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu <u>http://www.cse.wustl.edu/~jain/</u> /~jain/								
TIA/CIS Meeting, October 7, 1997								
The Ohio State University	Raj Jain							

- 1. Buffer size for satellite links
- 2. Guaranteed Frame Rate (GFR) design issues
- 3. GFR with FIFO
- 4. Point-to-Multipoint connections
- 5. Multipoint-to-point connections

Our Goal

- Ensure that the new ATM Forum TM 4.0/5.0 specs are "Satellite-friendly"
- □ There are no parameters or requirement that will perform badly in a long-delay satellite environment
- Users can use paths going through satellite links without requiring special equipment
- Develop optimal solutions for satellite networks

This work is sponsored by NASA Lewis Research Center.

The Ohio State University

Our Recent Past Projects

- Performance of Internet Protocols on ATM over Satellite: ABR vs UBR
- Optimization of performance of TCP/IP over satellite ATM networks
- Multipoint to point ABR
- Guaranteed Rate Service
- Ref: "ATM Traffic Management over Satellite Networks: Recent Issues," TIA, July 15, 1997, <u>http://www.cis.ohio-state.edu/~jain/talks/nas9707.htm</u>

1. UBR Buffer Study: Goals

- Assess buffer requirements for TCP over UBR for satellite latencies
- How does TCP throughput increase with increasing network buffers?
- □ How well can we do with less than 1 RTT buffers?

Ref: "UBR Buffer Requirements for TCP/IP over Satellite Networks," ATM Forum/97-0616, July 1997, <u>http://www.cis.ohio-state.edu/~jain/atmf/a97-</u>

U616.htm The Ohio State University

Parameters

- Latency between earth stations via satellite (1 way)
 - Single hop LEO: 5ms
 - Multiple hop LEO: 50 ms
 - Single hop GEO: 275 ms
- Number of Sources
 - Single hop LEO: 15, 50, 100
 - Multiple hop LEO, single hop GEO: 5, 15, 50

```
Buffer Size
```

```
• RTT × 2^{-k}, k = -1, 0, 1...6
```


UBR Buffer: Results

- Very small buffer sizes result in low efficiency
- □ Moderate buffer sizes (less than 1 RTT)
 - Efficiency increases with increase in buffer size
 - Efficiency asymptotically approaches 100%
- Buffer size = 0.5*RTT results in very high efficiency (98% or higher) even for a large number of sources
- 0.5*RTT buffers provide sufficiently high efficiency for TCP over UBR even for a large number of TCP sources

2. Guaranteed Frame Rate (GFR)

- □ UBR with min cell rate (MCR) \Rightarrow UBR+
- □ Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based.
 All cells of the frame have CLP=0 or all cells have CLP=1
 - All frames below MCR are given CLP =0 service.
 All frames above MCR are given best effort (CLP=1) service.

GFR Study I: Goals

- □ Explore three options for providing GFR
 - Tagging (policing)
 - Buffer Management
 - Queuing

Ref: "Simulation Experiments with Guaranteed Frame Rate for TCP/IP traffic," ATM Forum/97-0607, July 1997, <u>http://www.cis.ohio-state.edu/~jain/atmf/a97-</u>0607.htm

The Ohio State University

Unequal Rate Allocations

- Used per-VC tag sensitive buffer management (WBA) with FIFO queuing
- □ Number of sources : 15.
- □ 5 Groups with rates = 2.6, 5.3, 8, 10.7, 13.5 Mbps

Cannot allocate unequal rates with FIFO queuing The Ohio State University Raj Jain

- Per-VC queuing and scheduling is necessary for per-VC MCR. (FIFO + anything cannot do)
- FBA and proper scheduling is necessary for fair allocation of excess bandwidth
- One global threshold is sufficient for CLP0+1 guarantees Two thresholds are necessary for CLP0 guarantees

The Ohio State University

3. GFR Study II: Goals

- Provide minimum rate guarantees with FIFO buffer for TCP/IP traffic.
- Guarantees in the form of TCP throughput.
- How much network capacity can be allocated before guarantees can no longer be met?
- Study rate allocations for VCs with aggregate TCP flows.
- REF: "GFR --Providing Rate Guarantees with FIFO Buffers to TCP Traffic" ATM Forum/97-0831, Sep 1979, <u>http://www.cis.ohio-state.edu/~jain/atmf/a97-</u> 0831.htm

The Ohio State University

GFR Study II: Results

- SACK TCP throughput may be controlled with FIFO queuing under certain circumstances:
 - TCP, SACK (?)
 - $\Sigma MCRs < Uncommitted bandwidth$
 - Same RTT (?), Same frame size (?)
 - No other non-TCP or higher priority traffic (?)

GFR: Future Work

- □ Other TCP versions.
- □ Effect to non-adaptive (UDP) traffic
- □ Effect of RTT
- □ Effect of tagging
- □ Effect of frame sizes
- Parameter study
- □ Buffer threshold setting formula?
- □ How much buffer can be utilized?

Performance Comparison

□ Studied 4 existing and 3 new algorithms.

Algorithm	1	2	3	4	5	6	7
Complexity	High	High	Low	Med	>Med	>Med	>>Med
Transient					Fast for		Very fast
Response	Fast	Med	Med	Slow	overload		for overld
Noise	High	Med	High	Low	Low	Low	Low
BRM:FRM	1	< 1	≤ 1	≤ 1	may>1	lim=1	lim=1
Sensitivity to							
branch points							
and levels	High	High	Low	Med	>Med	Med	Med

The Ohio State University

Multipoint Consolidation: Results

- Consolidation algorithms offer tradeoffs between complexity, transient response, noise, overhead and scalability
- The new algorithms 6 and 7 speed up the transient response, while eliminating consolidation noise and controlling overhead

Cell Interleaving Solutions

- VP merge: VCI = sender IDVPs are used for other purposes.
- VC merge: Buffer at merge point till EOM bit = 1.
 Requires memory and adds to traffic burstiness and latency.

Sources, VCs, and Flows

- \Box Sw₂ has to deal with
 - Two VCs: Red and Blue
 - Four sources: Three red sources and one blue source
 - Three flows: Two red flows and one blue

Fairness Definitions

- □ Source-based: N-to-one connection
 - = N one-to-one connections
 - \Rightarrow Use max-min fairness among sources
- □ VC/Source-based:
 - 1. Allocate bandwidth fairly among VCs
 - 2. For each VC, allocate fairly among its sources
- Flow-based: Flow = VC coming on an input link. Switch can easily distinguish flows.
- VC/Flow-based: Allocate bandwidth fairly among VCs
 2. For each VC, allocate fairly among its flows

Example

- □ How is the bandwidth of LINK3 allocated?
- □ Source: {S1, S2, S3, SA} ← {37.5, 37.5, 37.5, 37.5}
- □ VC/Source: {S1, S2, S3, SA} ← {25, 25, 25, 75}
- □ Flow: {S1, S2, S3, SA} \leftarrow {25, 25, 50, 50}
- □ VC/Flow: {S1, S2, S3, SA} ← {18.75, 18.75, 37.5, 75}

- One-half of RTT buffers are OK with SACK
- GFR guarantees, in general, require per-VC queueing
- GFR guarantees may be possible w SACK TCP
- Point-to-mpt extensions to ABR switch algorithms
- Sources, VCs, and flows are different in Mpt-to-pt VCs

Our Contributions and Papers

All our contributions and papers are available on-line at <u>http://www.cis.ohio-state.edu/~jain/</u>

□ See <u>Recent Hot Papers</u> for tutorials.

The Ohio State University