Design Issues in Traffic					
Man	agement for the				
ATM	UBR+ Service for				
TC	P over Satellite				
	Networks				
	Raj Jain				
W	Raj Jain is now at /ashington University in Saint Louis Jain@cse.wustl.edu http://www.cse.wustl.edu/~jain/				

The Ohio State University

- □ Introduction: ABR and TCP Mechanisms
- □ Statement of Work: TCP over UBR Issues to Study
- Results Todate

Why ATM?

- □ ATM vs IP: Key Distinctions
 - Traffic Management: Explicit Rate vs Loss based
 - Signaling: Coming to IP in the form of RSVP
 - PNNI: QoS based routing
 - Switching: Coming soon to IP
 - Cells: Fixed size or small size is not important

Classes of Service

- ABR (Available bit rate):
 Source follows network feedback.
 Max throughput with minimum loss.
- UBR (Unspecified bit rate):
 User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.
- □ CBR (Constant bit rate): User declares required rate. Throughput, delay and delay variation guaranteed.
- □ VBR (Variable bit rate): Declare avg and max rate.

ort-VBR (Real-time): Conferencing.

Max delay guaranteed.

o nrt-VBR (non-real time): Stored video.

The Ohio State University

Why UBR?

- □ Cheapest service category for the user
- □ Basic UBR is very cheap to implement
- □ Simple enhancements can vastly improve performance
- Expected to carry the bulk of the best effort TCP/IP traffic.

TCP Congestion Mechanisms

- □ Slow Start
- □ Fast retransmit and recovery
- New Reno
- Selective Acknowledgement

Slow Start (Cont)

- Congestion Window (CWND) and Receiver Window
- Slow Start Threshold SSThresh = 0.5 × Congestion Window
- □ Exponential increase (Slow Start)
- □ Linear increase (Congestion Avoidance)
- \Box Horizontal line = Timer granularity of 100 to 500 ms

FRR

- □ Ideas:
 - Don't have to wait for timeout on a loss
 - Don't reduce on single loss due to error
 - Duplicate acks \Rightarrow Loss
- On three duplicate acks
 - Reduce CWND to $0.5 \times \text{CWND} + 3$ (instead of 1)
 - Set SSThresh to $0.5 \times \text{CWND} \Rightarrow \text{Linear increase}$
- For each subsequent duplicate ack, inflate CWND by 1 and send a packet if permitted
- □ Problem: Cannot recover from bursty (3+) losses

The Ohio State University

New Reno

- Janey Hoe's MS Thesis from MIT Published in SIGCOMM'96
- Solution: Determine the end-of a burst loss
 Remember the highest segment sent (RECOVER)
 Ack < RECOVER ⇒ Partial Ack
 Ack ≥ RECOVER ⇒ New Ack
- □ New Ack \Rightarrow Linear increase from $0.5 \times CWND$
- □ Partial Ack ⇒ Retransmit next packet, let window inflate
- □ Recovers from N losses in N round trips

Selective Ack

- **RFC 2018, October 1996**
- Receivers can indicate missing segments
- □ Example:
 - Using Bytes: Ack 500, SACK 1000-1500, 2000-2500
 - \Rightarrow Rcvd segment 1, lost 2, rcvd 3, lost 4, rcvd 5
- □ On a timeout, ignore all SACK info
- □ SACK negotiated at connection setup
- Used on all duplicate acks

0-499	500-999	1000-1499	1500-1999	2000-2499
The Ohio State Universit	y Lost		Lost	Raj Jain

Goals: Issues

- 1. Analyze Standard Switch and End-system Policies
- 2. Design Switch Drop Policies
- 3. Quantify Buffer Requirements in Switches
- 4. UBR with VBR Background
- 5. Performance of Bursty Sources
- 6. Changes to TCP Congestion Control
- 7. Optimizing the Performance of SACK TCP

Non-Goals

- Does not cover non-UBR issues.
- Does not cover ABR issues.
- Does not include non-TM issues.

2. Switch Drop Policies

- □ Selective Drop
- □ Fair buffer allocation

The Ohio State University

3. Buffer Requirements

- Assess buffer requirements for TCP over UBR for satellite latencies
- □ How well can we do with less than 1 RTT buffers?
- □ How is TCP throughput affected by:
 - Delay-bandwidth product
 - Buffer Size
 - Switch Drop Policies
 - o End-System Policies
 - Number of Sources

4a. Guaranteed Frame Rate (GFR)

- □ UBR with minimum cell rate (MCR) \Rightarrow UBR+
- □ Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based. All cells of the frame have CLP =0 or CLP =1
- All frames below MCR are given CLP = 0 service. All frames above MCR are given best effort (CLP = 1) service. The Ohio State University

4b. Guaranteed Rate Service

Guaranteed Rate (GR): Reserve a small fraction of bandwidth for UBR class.

GR	GFR
per-class reservation	per-VC reservation
per-class scheduling	per-VC accounting/scheduling
No new signaling	Need new signaling
Can be done now	In TM4+

5. Bursty Sources

- □ Large number of sources
- □ SPECweb'96 benchmark
- □ Past Results: ABR is stable.*
- □ Need to do a similar study for UBR over Satellites.
- *Ref: Performance of Bursty World Wide Web (WWW) Sources over ABR, ATM Forum 97-0425, April 1997

6. Problem in TCP Implementations

- Linear Increase in Segments: CWND/MSS = CWND/MSS + MSS/CWND
- □ In Bytes: CWND = CWND + MSS*MSS/CWND
- □ All computations are done in integer
- If CWND is large, MSS*MSS/CWND is zero and CWND does not change. CWND stays at 512*512 or 256 kB.

Solutions

Solution 1: Increment CWND after N acks (N > 1) CWND = CWND + N*MSS*MSS/CWND

- □ Solution 2: Use larger MSS on Satellite links such that MSS*MSS > CWND. $MSS \ge Path MTU$.
- **Solution 3**: Use floating point
- Recommendation: Use solution 1. It works for all MSSs.
- **To do**: Does this change TCP dynamics and adversely affect performance.

7. Optimize SACK TCP

- SACK helps only if retransmitted packets are not lost.
- Currently TCP retransmits immediately after 3 duplicate acks (Fast retransmit), and then waits RTT/2 for congestion to subside.
- ❑ Network may still be congested ⇒ Retransmitted packets lost.
- Proposed Solution: Delay retransmit by RTT/2, I.e., wait RTT/2 first, and then retransmit.

Results

- 1. Analyze Standard Switch and End-system Policies
- 2. Design Switch Drop Policies
- 3. Quantify Buffer Requirements in Switches
- 4. UBR with VBR Background
 - 4a. Guaranteed Frame Rate
 - 4b. Guaranteed Rate
- 5. Performance of Bursty Sources
- 6. Changes to TCP Congestion Control

7. Optimizing the Performance of SACK TCP

The Ohio State University

1. Policies: Results

- In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK). Different variations of increase/decrease have little impact due to small window sizes.
- In satellite networks, end-system improvements have more impact than switch-based improvements
- □ FRR hurts in satellite networks.
- Fairness depends upon the switch drop policies and not on end-system policies

The Ohio State University

Policies (Continued)

- □ In Satellite networks:
 - SACK helps significantly
 - Switch-based improvements have relatively less impact than end-system improvements
 - Fairness is not affected by SACK
- □ In LANs:
 - Previously retransmitted holes may have to be retransmitted on a timeout
 - \Rightarrow SACK can hurt under extreme congestion.

3. Buffer Requirements: Results

- Very small buffer sizes result in low efficiency
- □ Moderate buffer sizes (less than 1 RTT)
 - Efficiency increases with increase in buffer size
 - Efficiency asymptotically approaches 100%
- 0.5*RTT buffers provide sufficiently high efficiency (98% or higher) for SACK TCP over UBR even for a large number of TCP sources

4a. GFR Options						
Queuing	Per-VC	FIFO				
Buffer Management	Per-VC Thresholds	Global Threshold				
Tag-sensitive Buffer Mgmt	2 Thresholds	1 Threshold				
The Ohio State University		Raj Jain				

- Per-VC queuing and scheduling is necessary for per-VC MCR. (FIFO ok for TCP w SACK at low loads)
- FBA and proper scheduling is necessary for fair allocation of excess bandwidth
- One global threshold is sufficient for CLP0+1 guarantees Two thresholds are necessary for CLP0 guarantees

The Ohio State University

4b. Guaranteed Rate: Results

- Guaranteed rate is helpful in WANs.
- For WANs, the effect of reserving 10% bandwidth for UBR is more than that obtained by EPD, SD, or FBA
- □ For LANs, guaranteed rate is not so helpful. Drop policies are more important.
- For Satellites, end-system policies seem more important.

UBR is preferred for TCP/IP over ATM

- TCP policies over UBR may/may not be same as without ATM
- Very comprehensive study of TCP/IP over UBR: existing mechanisms, new mechanisms, parameter selection
- Includes TCP mechanisms, end systems, switches, buffers, traffic patterns, and UBR enhancements.
- □ Plan to influence the industry

The Ohio State University

Summary (Cont)

- For satellite networks, end-system policies (SACK) have more impact than switch policies (EPD).
- 0.5*RTT buffers provide sufficiently high efficiency (98% or higher) for SACK TCP over UBR even for a large number of TCP sources
- Reserving a small fraction for UBR helps it a lot in satellite networks

Our Contributions and Papers

- All our contributions and papers are available on-line at <u>http://www.cis.ohio-state.edu/~jain/</u>
- □ See Recent Hot Papers for tutorials.

