

- □ Statement of Work: TCP over UBR Issues to Study
- □ Task 2: Drop Policies
- **Task 6: TCP Implementation Issues**
- □ Task 7: SACK Optimization
- Task 4a: GFR

Why UBR?

- □ Cheapest service category for the user
- □ Basic UBR is very cheap to implement
- □ Simple enhancements can vastly improve performance
- Expected to carry the bulk of the best effort TCP/IP traffic.

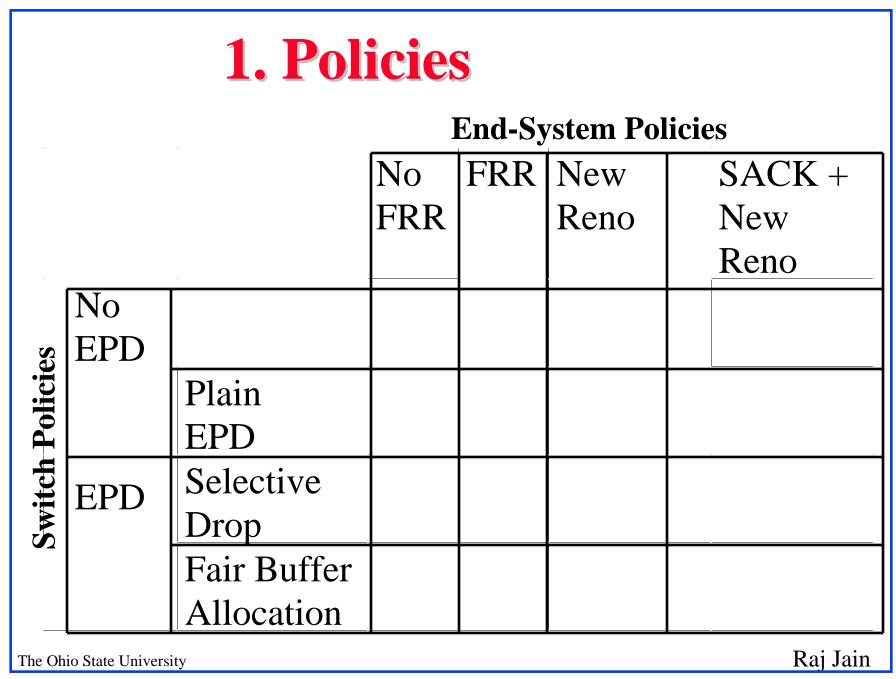
Goals: Issues

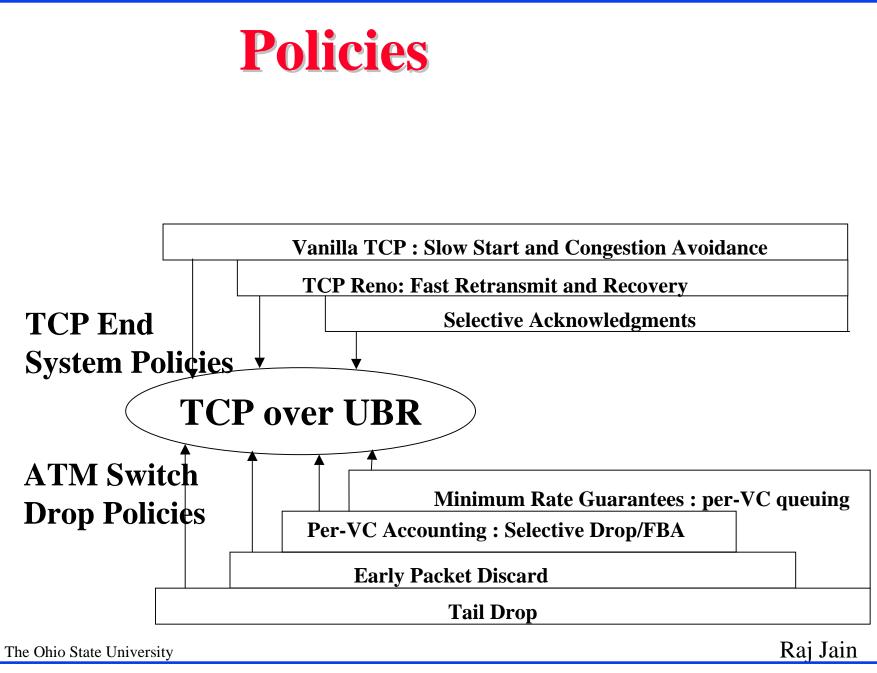
- 1. Analyze Standard Switch and End-system Policies
- 2. Design Switch Drop Policies
- 3. Quantify Buffer Requirements in Switches
- 4. UBR with VBR Background
- 5. Performance of Bursty Sources
- 6. Changes to TCP Congestion Control
- 7. Optimizing the Performance of SACK TCP

Non-Goals

- Does not cover non-UBR issues.
- Does not cover ABR issues.
- Does not include non-TM issues.

Status


- 1. Analyze Standard Switch and End-system Policies¹
- 2. Design Switch Drop Policies²
- 3. Quantify Buffer Requirements in Switches¹
- 4. UBR with VBR Background


4a. Guaranteed Frame Rate²

4b. Guaranteed Rate¹

- 5. Performance of Bursty Sources
- 6. Changes to TCP Congestion Control²
- 7. Optimizing the Performance of SACK TCP²

Status: ¹=Presented at the last meeting, ²=Presenting now The Ohio State University

1. Policies: Results

- In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK). Different variations of increase/decrease have little impact due to small window sizes.
- In satellite networks, end-system improvements have more impact than switch-based improvements
- □ FRR hurts in satellite networks.
- Fairness depends upon the switch drop policies and not on end-system policies

The Ohio State University

Policies (Continued)

- □ In Satellite networks:
 - SACK helps significantly
 - Switch-based improvements have relatively less impact than end-system improvements
 - Fairness is not affected by SACK
- □ In LANs:
 - Previously retransmitted holes may have to be retransmitted on a timeout
 - \Rightarrow SACK can hurt under extreme congestion.

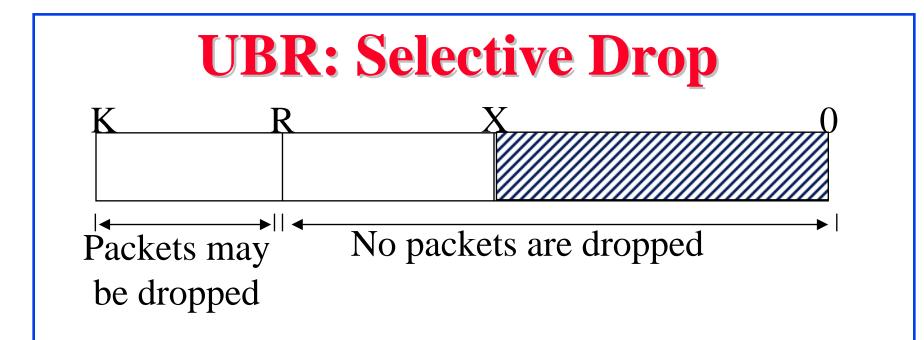
4b. Guaranteed Rate: Results

- Guaranteed rate is helpful in WANs.
- For WANs, the effect of reserving 10% bandwidth for UBR is more than that obtained by EPD, SD, or FBA
- □ For LANs, guaranteed rate is not so helpful. Drop policies are more important.
- For Satellites, end-system policies seem more important.

Past Results: Summary

- For satellite networks, end-system policies (SACK) have more impact than switch policies (EPD).
- Fast retransmit and recovery (FRR) improves performance over LANs but <u>degrades</u> performance over WANs and satellites.
- 0.5*RTT buffers provide sufficiently high efficiency (98% or higher) for SACK TCP over UBR even for a large number of TCP sources
- Reserving a small fraction for UBR helps it a lot in satellite networks

The Ohio State University

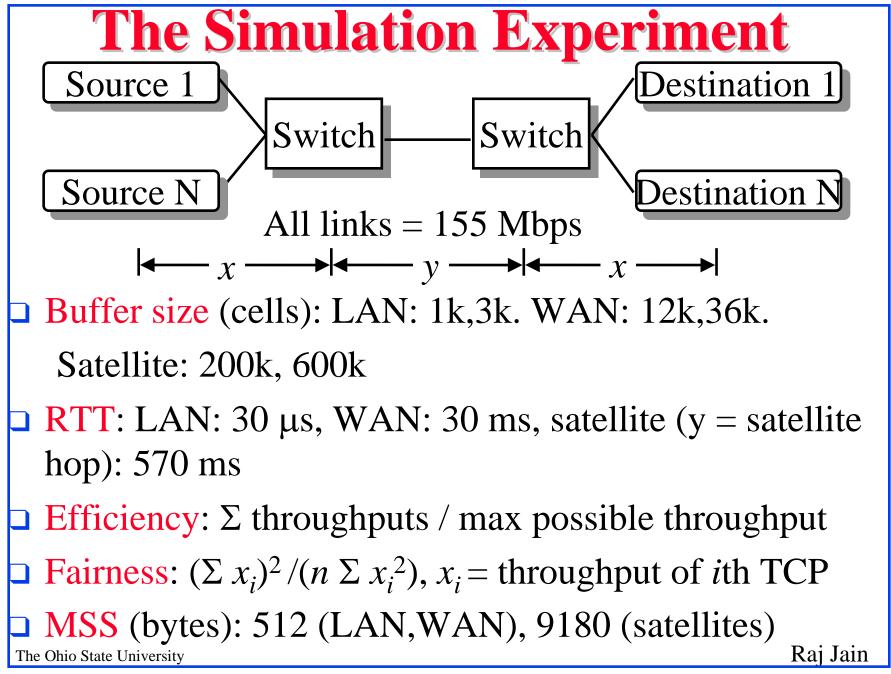

TCP over UBR: Past Results

- □ For zero TCP loss, buffers needed = Σ TCP windows.
- □ Poor performance with limited buffers.
- **EPD** improves efficiency but not fairness.
- □ In high delay-bandwidth paths, too many packets lost
 ⇒ EPD has little effect in satellite networks.

2. Switch Drop Policies

- □ Selective Drop
- □ Fair buffer allocation

The Ohio State University



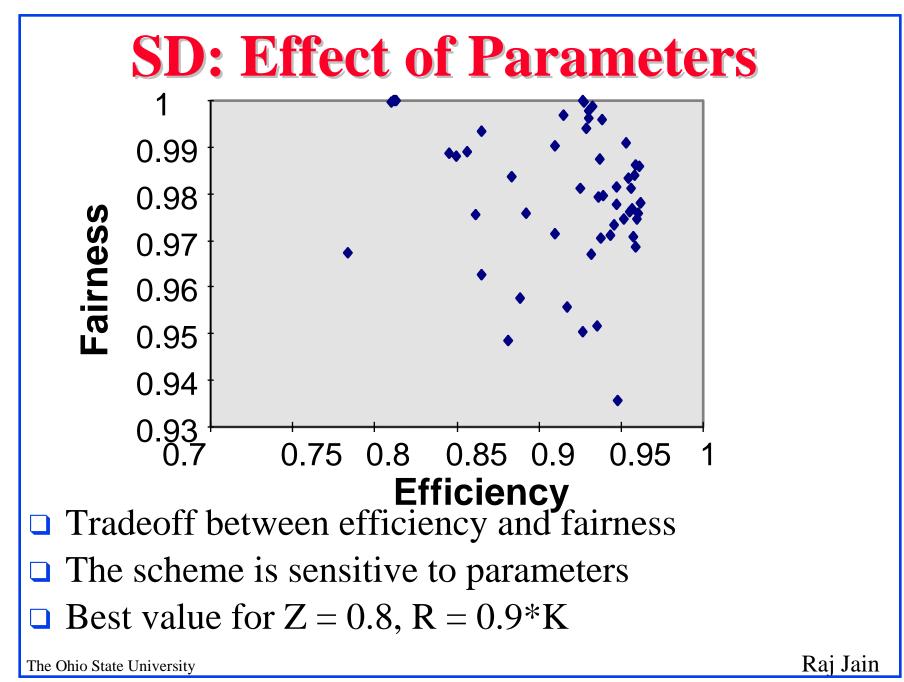
- \Box K = Buffer size (cells).
- \Box R = Drop threshold.
- \Box X = Buffer occupancy.
- EPD: When (X > R) new incoming packets are dropped. Partially received packets are accepted if possible.

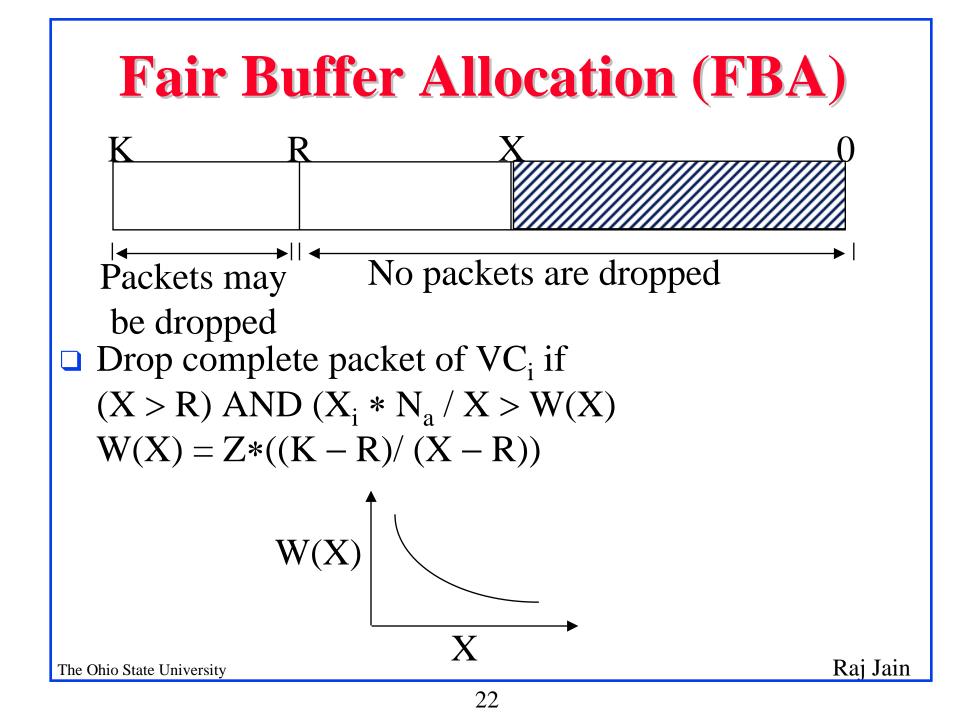
The Ohio State University

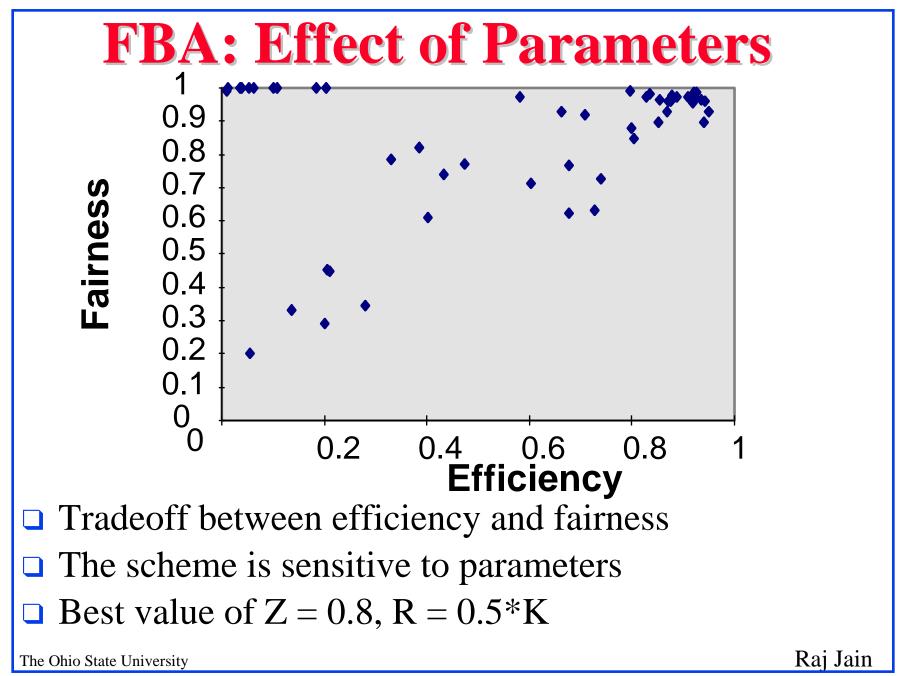
Selective Drop (Cont)

- \Box N_a = Number of active VCs in the buffer
- **\Box** Fair Allocation = X / N_a
- □ Per-VC accounting: $X_i = #$ of cells in buffer
- □ Buffer load ratio of VC_i = $X_i / (X / N_a)$
- Drop complete packet of VC_i if:
 Selective Drop: (X > R) AND (X_i/(X/N_a) > Z)

TCP Parameters


- TCP maximum window size, LAN: 64 Kb.
 WAN: 600,000. Satellite: 8.7 million bytes.
- MSS = 512 Bytes (LANs and WANs),
 9180 (Satellites)
- □ No TCP delay ack timer
- \Box All processing delay, delay variation = 0
- □ TCP sources are unidirectional
- \Box TCP timer granularity = 100 ms


Efficiency


Configuration	TCP	UBR	EPD	Selective Drop
	SACK	0.79	0.89	0.95
LAN	Vanilla	0.34	0.67	0.84
	Reno	0.69	0.97	0.97
	SACK	0.94	0.91	0.95
WAN	Vanilla	0.91	0.90	0.91
	Reno	0.78	0.86	0.81
	SACK	0.93	0.80	0.86
Satellite	Vanilla	0.79	0.77	0.78
	Reno	0.57	0.16	0.17

Fairness

Configuration	TCP	UBR	EPD	Selective Drop
	SACK	0.54	0.84	0.97
LAN	Vanilla	0.69	0.69	0.92
	Reno	0.71	0.98	0.99
	SACK	0.98	0.97	0.97
WAN	Vanilla	0.76	0.95	0.94
	Reno	0.90	0.97	0.99
	SACK	1.00	0.92	0.97
Satellite	Vanilla	1.00	0.94	0.95
	Reno	0.98	0.99	0.99

UBR + EPD + FBA

			TI	BR	EPD		SD		FBA	
							<u> </u>			
Conf.	Srcs	Buffers	Eff.	Fairn.	Eff.	Fairn.	Eff.	Fairn.	Eff.	Fairn.
LAN	5	1000	0.21	0.68	0.49	0.57	0.75	0.99	0.88	0.98
LAN	5	2000	0.32	0.90	0.68	0.98	0.85	0.96	0.84	0.98
LAN	5	3000	0.47	0.97	0.72	0.84	0.90	0.99	0.92	0.97
LAN	15	1000	0.22	0.31	0.55	0.56	0.76	0.76	0.91	0.97
LAN	15	2000	0.49	0.59	0.81	0.87	0.82	0.98	0.85	0.96
LAN	15	3000	0.47	0.80	0.91	0.78	0.94	0.94	0.95	0.93
WAN	5	12000	0.86	0.75	0.90	0.94	0.90	0.95	0.95	0.94
WAN	5	24000	0.90	0.83	0.91	0.99	0.92	0.99	0.92	1
WAN	5	36000	0.91	0.86	0.81	1	0.81	1	0.81	1
WAN	15	12000	0.96	0.67	0.92	0.93	0.94	0.91	0.95	0.97
WAN	15	24000	0.94	0.82	0.91	0.92	0.94	0.97	0.96	0.98
WAN	15	36000	0.92	0.77	0.96	0.91	0.96	0.89	0.95	0.97
LAN LAN WAN WAN WAN WAN	15 15 5 5 5 15 15	$\begin{array}{r} 2000\\ 3000\\ 12000\\ 24000\\ 36000\\ 12000\\ 24000\end{array}$	$\begin{array}{r} 0.49\\ 0.47\\ 0.86\\ 0.90\\ 0.91\\ 0.96\\ 0.94 \end{array}$	$\begin{array}{c} 0.59\\ 0.80\\ 0.75\\ 0.83\\ 0.86\\ 0.67\\ 0.82\\ \end{array}$	0.81 0.91 0.90 0.91 0.81 0.92 0.91	$\begin{array}{r} 0.87\\ 0.78\\ 0.94\\ 0.99\\ 1\\ 0.93\\ 0.92\\ \end{array}$	0.82 0.94 0.90 0.92 0.81 0.94 0.94	0.98 0.94 0.95 0.99 1 0.91 0.97	$\begin{array}{c} 0.85\\ 0.95\\ 0.95\\ 0.92\\ 0.81\\ 0.95\\ 0.96\\ \end{array}$	

G FBA improves both efficiency and fairness

□ Effect of FBA is similar to that of SD. SD is simpler.

Drop Policies: Results

- □ Low efficiency and fairness for TCP over UBR
- □ Need switch buffers = Σ (TCP maximum window sizes) for zero TCP loss
- **EPD** improves efficiency but not fairness
- □ Selective drop improves fairness
- Fair Buffer Allocation improves both efficiency and fairness, but is sensitive to parameters
- **TCP** synchronization affects performance

6. Problem in TCP Implementations

- Linear Increase in Segments: CWND/MSS = CWND/MSS + MSS/CWND
- □ In Bytes: CWND = CWND + MSS*MSS/CWND
- □ All computations are done in integer
- If CWND is large, MSS*MSS/CWND is zero and CWND does not change. CWND stays at 512*512 or 256 kB.

Solutions

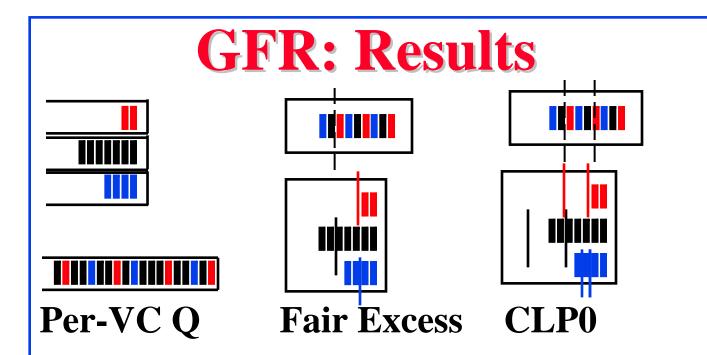
- Solution 1: Increment CWND after N acks (N > 1) CWND = CWND + N*MSS*MSS/CWND
- □ Solution 2: Use larger MSS on Satellite links such that MSS*MSS > CWND. MSS ≥ Path MTU.
- **Solution 3**: Use floating point
- Recommendation: Use solution 1. It works for all MSSs.
- **To do**: Does this change TCP dynamics and adversely affect performance.
- Result: Solution 1 works. TCP dynamics is not affected.

The Ohio State University

7. Optimize SACK TCP

- SACK helps only if retransmitted packets are not lost.
- Currently TCP retransmits immediately after 3 duplicate acks (Fast retransmit), and then waits RTT/2 for congestion to subside.
- □ Network may still be congested
 - \Rightarrow Retransmitted packets lost.
- Proposed Solution: Delay retransmit by RTT/2, I.e., wait RTT/2 first, and then retransmit.
- □ New Result: Delayed retransmit does not help.

4a. Guaranteed Frame Rate (GFR)


- □ UBR with minimum cell rate (MCR) \Rightarrow UBR+
- □ Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based.
 All cells of the frame have CLP =0 or CLP =1
 - All frames below MCR are given CLP =0 service.
 All frames above MCR are given best effort (CLP =1) service.

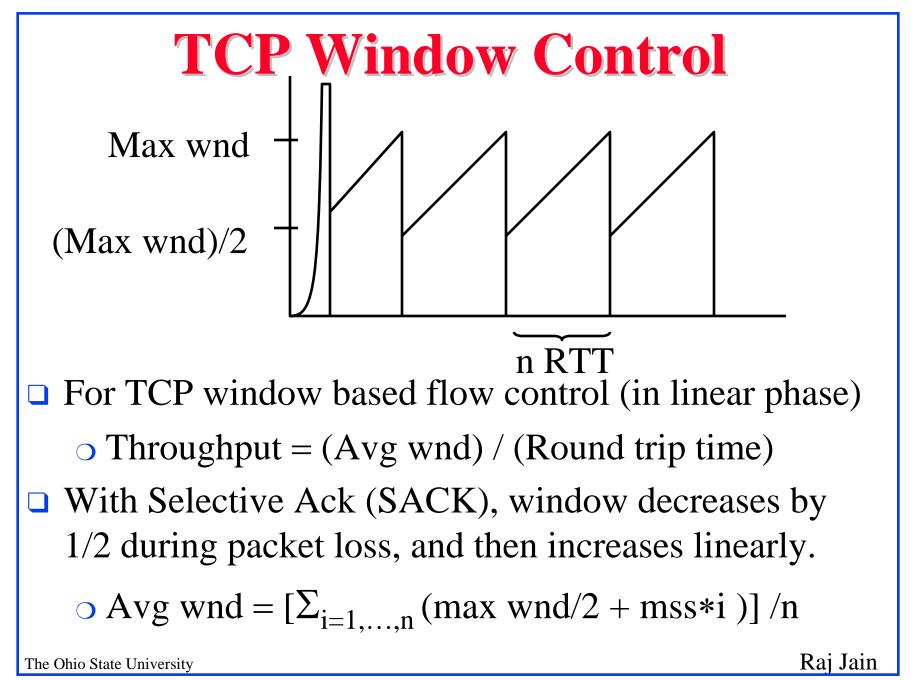
Chio State University of excess (over MCR) is arbitrary

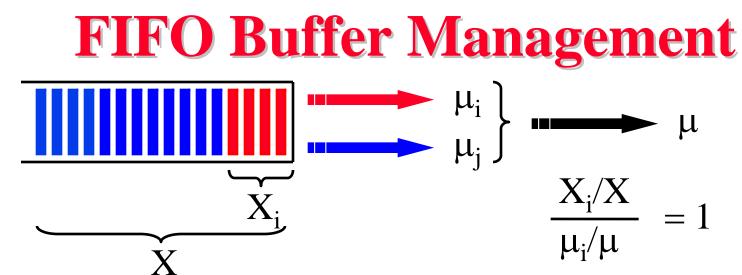
4a. GFR Options						
Queuing	Per-VC	FIFO				
Buffer Management	Per-VC Thresholds	Global Threshold				
Tag-sensitive Buffer Mgmt	2 Thresholds	1 Threshold				
The Ohio State University		Raj Jain				

Options (Cont)

- □ FIFO queuing versus per-VC queuing
 - Per-VC queuing is too expensive.
 - FIFO queuing should work by setting thresholds based on bandwidth allocations.
- Buffer management policies
 - Per-VC accounting policies need to be studied
- Network tagging and end-system tagging
 - End system tagging can prioritize certain cells or cell streams.
- Network tagging used for policing -- must be requested by the end system.

- Per-VC queuing and scheduling is sufficient for per-VC MCR.
- FBA and proper scheduling is sufficient for fair allocation of excess bandwidth
- One global threshold is sufficient for CLP0+1 guarantees Two thresholds are necessary for CLP0 guarantees

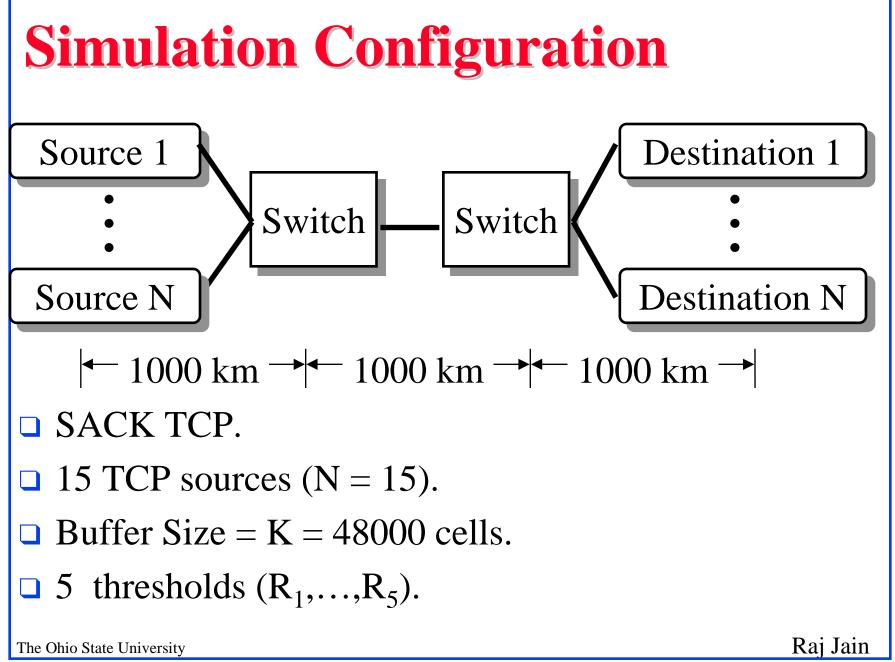

The Ohio State University


Issues

- All FIFO queuing cases were studied with high target network load, i.e., most of the network bandwidth was allocated as GFR.
- Need to study cases with lower percentage of network capacity allocated to GFR VCs.

Further Study: Goals

- Provide minimum rate guarantees with FIFO buffer for TCP/IP traffic.
- Guarantees in the form of TCP throughput and not cell rate (MCR).
- How much network capacity can be allocated before guarantees can no longer be met?
- Study rate allocations for VCs with <u>aggregate</u> TCP flows.



- □ Fraction of buffer occupancy (X_i/X) determines the fraction of output rate (μ_i/μ) for VCi.
- Maintaining average per-VC buffer occupancy enables control of per-VC output rates.
- **\Box** Set a threshold (R_i) for each VC.
- When X_i exceeds R_i, then control the VC's buffer occupancy.

Buffer Management for TCP

- TCP responds to packet loss by reducing CWND by one-half.
 - When *i*th flow's buffer occupancy exceeds R_i , drop a <u>single</u> packet.
 - Allow buffer occupancy to decrease below R_i, and then repeat above step if necessary.
- \Box K = Total buffer capacity.
- **□** Target utilization = $\Sigma R_i / K$.
- □ Guaranteed TCP throughput = Capacity $* R_i/K$
- □ Expected throughput, $\mu_i = \mu * R_i / \Sigma R_i$. ($\mu = \Sigma \mu_i$)

Configuration (contd.)

Sources	Expt	Expt	Expt	Expt	Expected
	1	2	3	4	Throughput
$1-3(R_1)$	305	458	611	764	2.8 Mbps
$4-6(R_2)$	611	917	1223	1528	5.6 Mbps
$7-9(R_3)$	917	1375	1834	2293	8.4 Mbps
10-24 (R ₄)	1223	1834	2446	3057	11.2 Mbps
$13-15 (R_5)$	1528	2293	3057	3822	14.0 Mbps
$\Sigma R_i/K$	29%	43%	57%	71%	

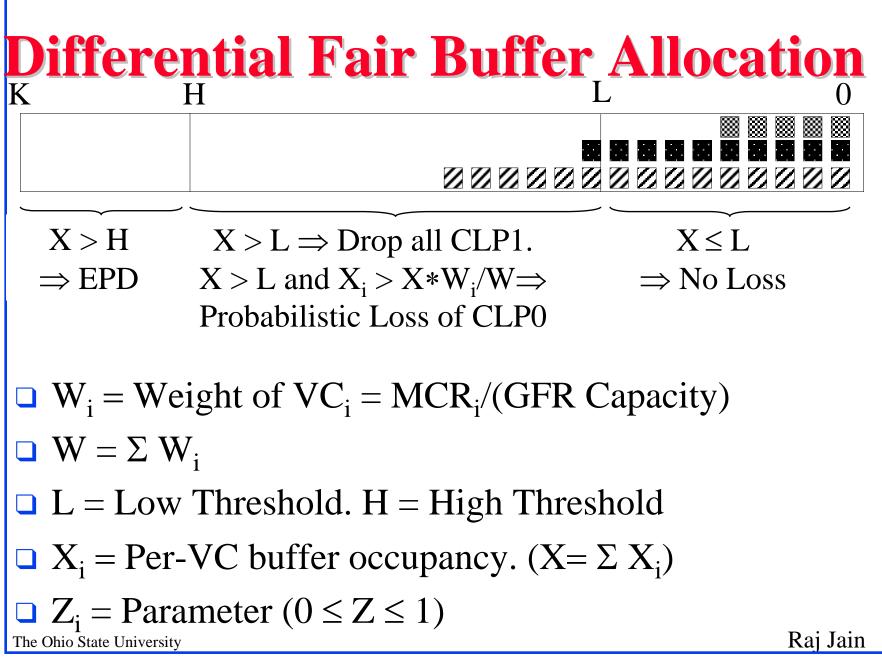
□ Threshold $R_{ij} \propto \lfloor K*MCR_i/PCR \rfloor$

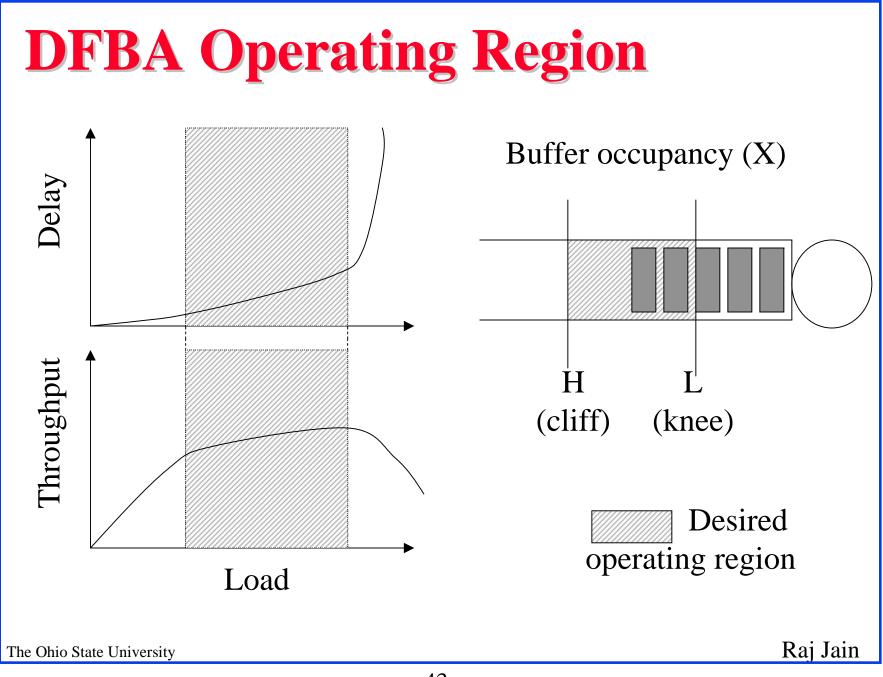
- **Total throughput** $\mu = 126$ Mbps. MSS =1024B.
- Expected throughput = $\mu * R_i / \Sigma R_i$

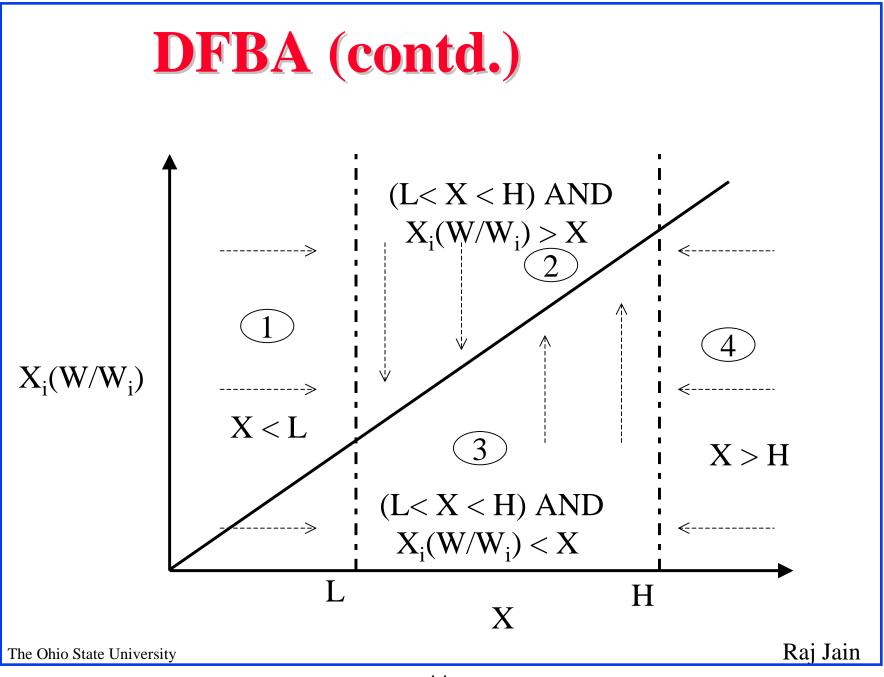
The Ohio State University

Simulation Results

TCP	Throughput ratio			
Number	(observed / expected)			
1-3	1.0	1.03	1.02	1.08
4-6	0.98	1.01	1.03	1.04
7-9	0.98	1.00	1.00	1.02
10-12	0.98	0.99	0.98	0.88
13-15	1.02	0.98	0.97	1.01


□ All ratios close to 1.


Variations increases with utilization.


□ All sources experience similar queuing delays

TCP Window Control

- TCP throughput can be controlled by controlling window.
- □ FIFO buffer ⇒ Relative throughput per connection is proportional to fraction of buffer occupancy.
- □ Controlling TCP buffer occupancy
 - \Rightarrow May control throughput.
- □ High buffer utilization \Rightarrow Harder to control throughput.
- Formula does not hold for very low buffer utilization Very small TCP windows
 - \Rightarrow SACK TCP times out if half the window is lost

DFBA (contd.)

Region	Condition	Action
1	Underload	Improve
		efficiency
2	Mild congestion,	Drop low priority
	more than fair	packets, bring
	share	down to fair share
3	Mild congestion,	Drop low priority
	less than fair share	packets, bring up
		to fair share
4	Severe congestion	Reduce load
The Ohio State University		Raj Jain

DFBA Algorithm □ When first cell of frame arrives: \Box IF (X < L) THEN • Accept frame \Box ELSE IF (X > H) THEN • Drop frame \Box ELSE IF ((L < X < H) AND (X_i > X×W_i/W)) THEN • Drop CLP1 frame • Drop CLP0 frame with $P\{Drop\} = Z_i (\alpha \times \frac{X_i - X \times W_i / W}{X(1 - W_i / W)}$ $+(1-\alpha)\times \frac{X-L}{\mu}$ Raj Jain The Ohio State University

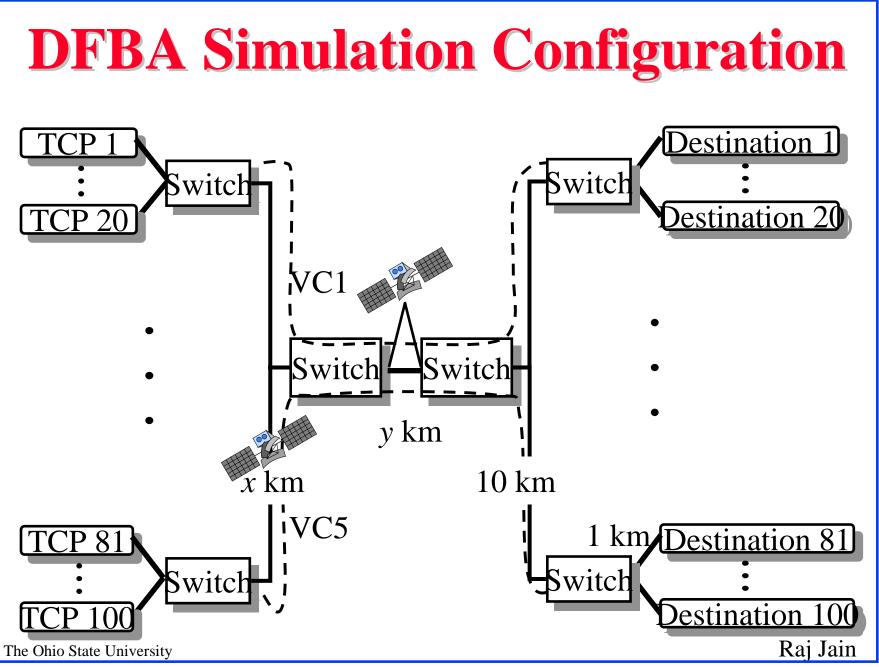
Drop Probability

□ Fairness Component (VC_i's fair share = $X \times W_i/W$)

$$\frac{X_i - X \times W_i / W}{X \times (1 - W_i / W)}$$

Increases linearly as X_i increases from $X{\times}W_i\!/\!W$ to X

• Efficiency Component $\frac{X-L}{H-L}$


Increases linearly as X increases from L to H

Drop Probability (contd.)

 \Box Z_i allows scaling of total probability function

- Higher drop probability results in lower TCP windows
- TCP window size W ∝ 1/√P{Drop} for random packet loss [Mathis] TCP data rate D ∝ MSS TCP data rate D ∝ MSS RTT × √P(drop)
 To maintain high TCP data rate for large RTT:
 Small P(Drop)
 Large MSS
 Choose small Z_i for satellite VCs.
 Choose small Z_i for VCs with larger MCRs.

The Ohio State University

DFBA Simulation Configuration

- □ SACK TCP, 50 and 100 TCP sources
- □ 5 VCs through backbone link.
- □ Local switches merge TCP sources.
- \Box x = Access hop = 50 µs (Campus), or 250 ms GEO
- y = Backbone hop = 5 ms (WAN or LEO) or 250 ms (GEO)
- GFR capacity = 353.207 kcells/sec (≈155.52 Mbps)
 α = 0.5

Simulation Configuration (contd)

□ 50 TCPs with 5 VCs (50% MCR allocation)

• MCR_i = 12, 24, 36, 48, 60 kcells/sec, i=1, 2, 3, 4, 5

 \circ W_i = 0.034, 0.068, 0.102, 0.136, 0.170

◦ Σ (MCR_i/GFR capacity) = Σ W_i = W ≈ 0.5

Simulation Configuration (contd)

 50 and 100 TCPs with 5 VCs (85% MCR allocation)
 MCR_i = 20, 40, 60, 80, 100 kcells/sec, i=1, 2, 3, 4, 5
 W_i = 0.0566, 0.1132, 0.1698, 0.2264, 0.283

◦ Σ (MCR_i/GFR capacity) = Σ W_i = W ≈ 0.85

Simulation Results

MCR	Achieved	Excess	Excess /
	Throughput		MCR
4.61	11.86	7.25	1.57
9.22	18.63	9.42	1.02
13.82	24.80	10.98	0.79
18.43	32.99	14.56	0.79
23.04	38.60	15.56	0.68
69.12	126.88	57.77	

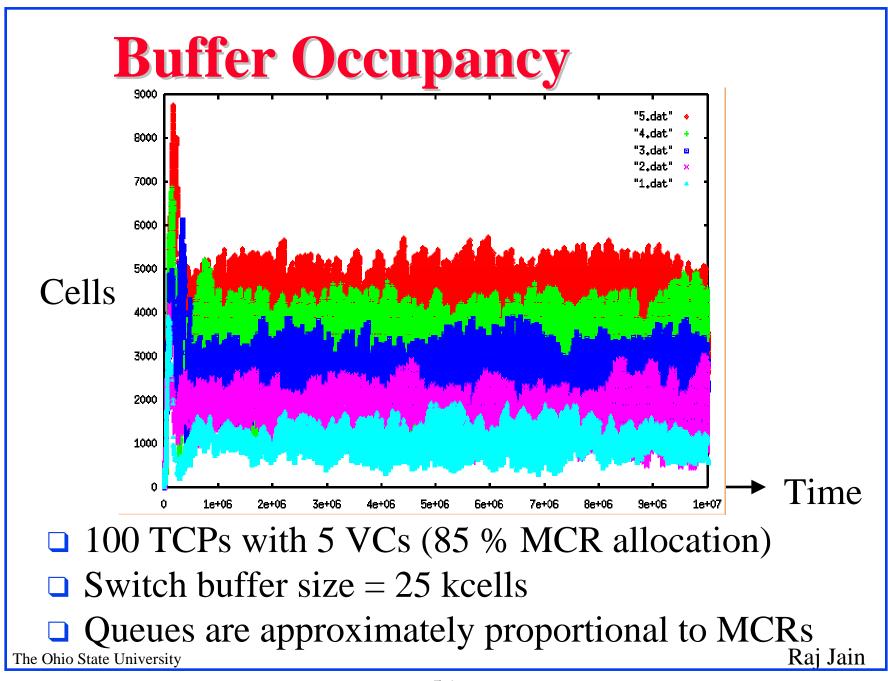
□ 50 TCPs with 5VCs (50% MCR allocation)

- \Box Switch buffer size = 25 kcells
- \Box Z_i=1, for all i

Die MCR guaranteed. Lower MCRs get higher excess. The Ohio State University Raj Jain

Effect of MCR Allocation

MCR	Achieved	Excess	Excess/MCR
	Throughput		
7.68	12.52	4.84	0.63
15.36	18.29	2.93	0.19
23.04	25.57	2.53	0.11
30.72	31.78	1.06	0.03
38.40	38.72	0.32	0.01
115.2	126.88	11.68	


- □ 50 TCPs with 5 VCs (85% MCR allocation)
- \Box Switch buffer size = 25 kcells
- \Box Z_i=1, for all I

Dhio State University MCRs get higher excess Raj Jain

Effect of Number of TCPs

MCR	Achieved	Excess	Excess/MCR
	Throughput		
7.68	11.29	3.61	0.47
15.36	18.19	2.83	0.18
23.04	26.00	2.96	0.13
30.72	32.35	1.63	0.05
38.40	39.09	0.69	0.02
115.2	126.92	11.72	

- □ 100 TCPs with 5 VCs (85 % MCR allocation)
- \Box Switch buffer size = 25 kcells
- \Box Z_i=1, for all i

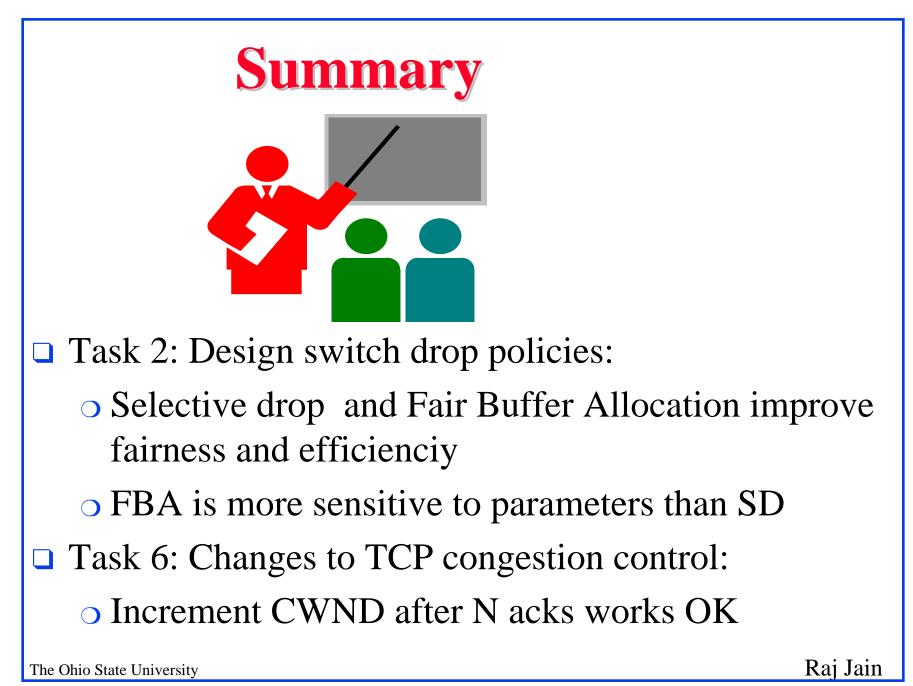
Effect of Buffer Size

MCR	Achieved	Excess	Excess/MCR
	Throughput		
7.68	11.79	4.11	0.54
15.36	18.55	3.19	0.21
23.04	25.13	2.09	0.09
30.72	32.23	1.51	0.05
38.40	38.97	0.57	0.01
115.2	126.67	11.47	

- □ 100 TCPs with 5 VCs (85 % MCR allocation)
- □ Switch buffer size = 6 kcells (Small)
- \Box Z_i=1, for all I
- □ MCR guaranteed. Lower MCRs get higher excess. The Ohio State University

Buffer Size (Cont)

MCR	Achieved	Excess	Excess/MCR
	Throughput		
7.68	10.02	2.34	0.30
15.36	19.31	3.95	0.26
23.04	25.78	2.74	0.12
30.72	32.96	2.24	0.07
38.40	38.56	0.16	0.00
115.2	126.63	11.43	


- □ 100 TCPs with 5 VCs (85 % MCR allocation)
- □ Switch buffer size = 3 kcells (Small)
- \Box Z_i=1, for all I
- □ MCR guaranteed. Lower MCRs get higher excess. The Ohio State University

Effect of Z _i					
$Z_i =$	$= 1 - W_i / W$	$Z_i =$	$(1-W_{i}/W)^{2}$		
Excess	Excess/MCR	Excess	Excess/MCR		
3.84	0.50	0.53	0.07		
2.90	0.19	2.97	0.19		
2.27	0.10	2.77	0.12		
2.56	0.08	2.39	0.08		
0.02	0.02	3.14	0.08		

□ 100 TCPs with 5 VCs (85 % MCR allocation)

 \Box Switch buffer size = 6 kcells

Small Z_i for large MCR enables MCR proportional sharing of excess capacity
The Ohio State University
Raj

Summary (Cont)

- **Task 7: Optimizing SACK TCP:**
 - Delayed retransmit has no effect.
- □ Task 4a: Guaranteed Frame Rate:
 - SACK TCP throughput may be controlled with FIFO queuing under certain circumstances:
 - □ TCP, SACK (?)
 - $\square \Sigma MCRs < GFR Capacity$
 - □ Same RTT (?), Same frame size (?)
 - No other non-TCP or higher priority traffic (?)

• New Buffer Management Policy: DFBA

The Ohio State University

References

All our contributions and papers are available on-line at

http://www.cis.ohio-state.edu/~jain/

- □ See Recent Hot Papers for tutorials.
- Tasks 1 and 2: Analyze and design switch and endsystem policies. UBR drop policies.
 Rohit Goyal, et al, "Improving the Performance of TCP over the ATM-UBR service", To appear in Computer Communications, <u>http://www.cis.ohiostate.edu/~jain/papers/cc.htm</u>

References (Cont)

- Task 3: Buffer requirements for various delaybandwidth products
 - Rohit Goyal, et al, "Analysis and Simulation of Delay and Buffer Requirements of Satellite-ATM Networks for TCP/IP Traffic," Submitted to IEEE Journal of Selected Areas in Communications, March 1998, <u>http://www.cis.ohio-</u> <u>state.edu/~jain/papers/jsac98.htm</u>

References (Cont)

□ Task 4: UBR with GR and GFR

 Rohit Goyal, et al, "Design Issues for providing Minimum Rate Guarantees to the ATM Unspecified Bit Rate Service", Proceedings of ATM'98, May 1998, <u>http://www.cis.ohio-</u> <u>state.edu/~jain/papers/atm98.htm</u>

 Rohit Goyal, et al, "Providing Rate Guarantees to TCP over the ATM GFR Service," Submitted to LCN'98, <u>http://www.cis.ohio-</u> state.edu/~jain/papers/lcn98.htm

