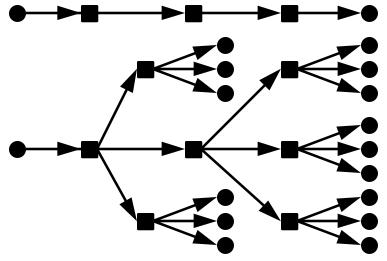
Multipoint Communication

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

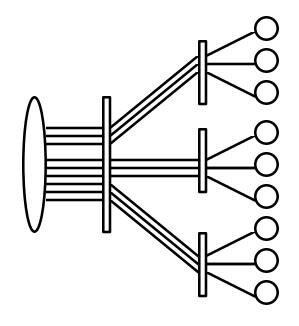


- Why Multipoint?
- Multipoint Routing Algorithms
- Multipoint Communication in IP networks
- Multipoint Communication in ATM Networks
- □ Traffic Management for Multipoint Communication

The Ohio State University

Multipoint Communication

- Can be done at any layer
- Application Layer: Video Conferencing
- Transport Layer: SRM, RAMP, ATM
- Network Layer: IP, DVMRP, MOSPF, RPF
- □ Datalink + Physical Layers: Ethernet


The Ohio State University

Multipoint Applications

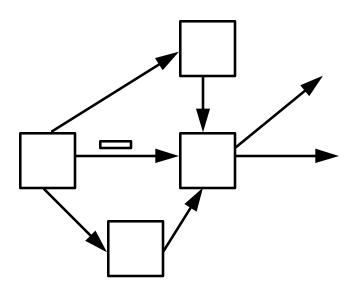
- Audiovisual conferencing
- Distance Learning
- Video on Demand
- Tele-metering
- Distributed interactive games
- Data distribution (usenet, stock prices)
- Server synchronization (DNS/Routing updates)
- Advertising and locating servers
- Communicating to unknown/dynamic group

The Ohio State University

Application Layer Multicast

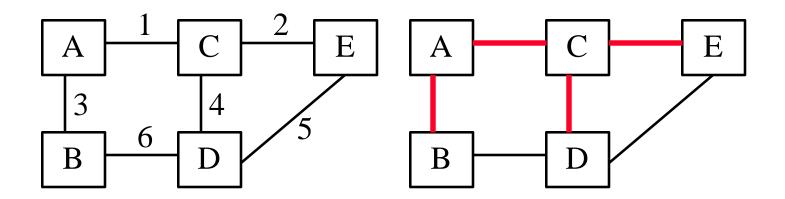
- □ Problems: n times more processing/buffering/bandwidth overhead
- Applications need lower layers help in handling unknown addresses

The Ohio State University


Multicast Routing Algorithms

- Flooding
- Spanning Trees
- Reverse Path Forwarding
- Flood and Prune
- Steiner Trees
- □ Center-Based Trees, e.g., core-based trees

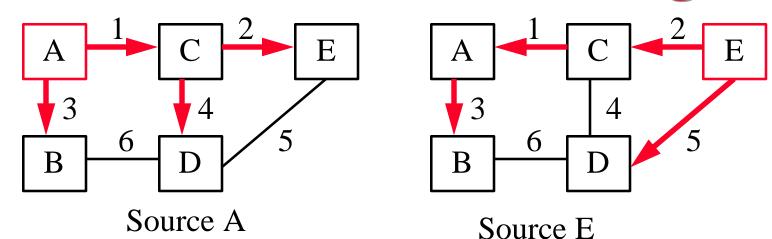
Most routing protocol standards are combination of these algorithms.


Flooding

- Used in usenet news
- □ Forward if first reception of this packet
 - ⇒ Need to maintain a list of recently seen packets
- □ Sometimes the message has a trace of recent path

The Ohio State University

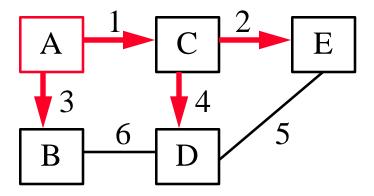
Spanning Tree


- Used by MAC bridges
- □ Packet is forwarded on all branches except the one it came on
- □ Problem:

All packets from all sources follow the same path

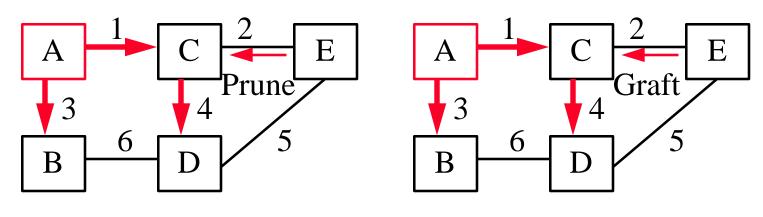
⇒ Congestion

The Ohio State University


Reverse Path Forwarding

- □ Also known as reverse path broadcasting (RPB)
- Used initially in MBone
- On receipt note source S and interface I
- □ If "I" belongs to shortest path towards S, forward to all interfaces except I
- Otherwise drop the packet

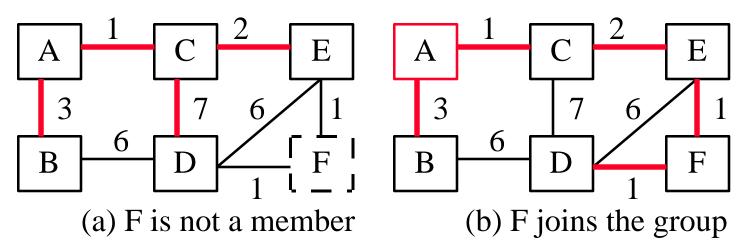
The Ohio State University


RPF (Cont)

- Optionally, check and forward only if the node is on the shortest path to the next node
- Implicit spanning tree. Different tree for different sources.
- □ Problem: Packets <u>flooded</u> to entire network

The Ohio State University

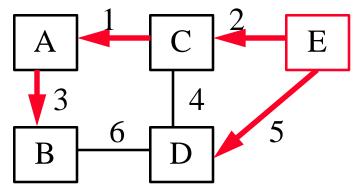
Flood and Prune


No listeners at E

- Listeners at E
- □ Also known as reverse path multicasting (RPM)
- □ Used in MBone since September 1993
- First packet is flooded
- □ All leaf routers will receive the first packet

The Ohio State University

- ☐ If no group member on the subnet, the router sends a "prune"
- ☐ If all branches pruned, the intermediate router sends a "prune"
- Periodically, source floods a packet
- □ Problem: Per group and per source state


Steiner Trees

- □ Centralized algorithm to compute global optimal spanning tree given all listeners
- Applies only if links are symmetric
- NP Complete ⇒ Exponential complexity⇒ Not implemented
- \Box Tree varies with the membership \Rightarrow Unstable

The Ohio State University

Center-Based Trees

- ☐ Aimed at multiple senders, multiple recipients
- Core-based tree (CBT) is the most popular example
- Choose a center
- Receivers send join messages to the center (routers remember the input interface)
- Senders send packets towards the center until they reach any router on the tree

The Ohio State University

CBT (Cont)

- Possible to have multiple centers for fault tolerance
- □ Routers need to remember one interface per group (not per source) ⇒ More scalable than RPF
- Problem: Suboptimal for some sources and some receivers

Multicast Routing Protocols

- Reverse Path Forwarding (RPF)
- Distance-vector multicast routing protocol (DVMRP)
- Multicast extensions to Open Shortest-Path First Protocol (MOSPF)
- Protocol-Independent Multicast Dense mode (PIM-DM)
- Protocol-Independent Multicast Sparse mode (PIM-SM)

The Ohio State University

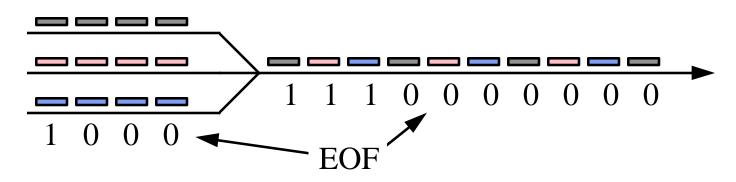
IP Multicast: Design Principles

- Single address per group
- Members located anywhere
- Members can join and leave at will
- Senders need not be aware of memberships
 Like a TV channel ⇒ Scalable
- Sender need not be a member
- \square Soft connections \Rightarrow periodic renewal

IP vs ATM

Category	IP/RSVP	ATM UNI 3.0
Orientation	Receiver based	Sender based
State	Soft state	Hard state
QoS Setup	Separate from route	Concurrent with
time	establishment	route establishment
QoS Changes	Dynamic	Static
Directionality	Unidirectional	Bi-directional unicast,
		unidirectinal
		multicast
Heterogeneity	Receiver	Uniform QoS to all
	heterogeneity	receivers

UNI 4.0 adds leaf-initiated join The Ohio State University


Multiway Communication on ATM

- ATM Forum Multiway BOF formed in June 1996 after marketing studies indicated high user interest
- □ ITU Study group 13 on ATM based multiway communications technologies
- ITU Study group 11 on Signaling requirements for Capability Set 3 (Multimedia) specifies 4 types of multipoint connections.

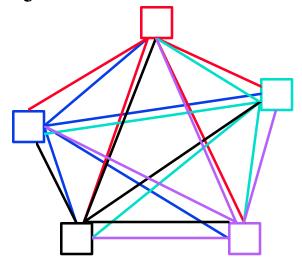
Multiway on ATM (Cont)

- □ Type 1: point-to-point
- ☐ Type 2: Point-to-multipoint
 - Unidirectional
 - □ Bi-directional with nonzero return bandwidth
- □ Type 3: Multipoint-to-point
- □ Type 4: Multipoint-to-Multipoint
- □ Variegated VCs ⇒ Receivers with different bandwidth
 - Applications: Video distribution, stock market

Key Issues

- Routing and packet multiplexing
- Packet multiplexing not allowed in AAL5
- AAL 3/4 has a 10-bit multiplexing ID in each cell payload ⇒ 1024 packets can be intermixed

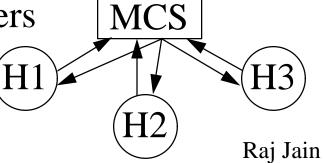
ATM Multiway Methods


- 1. LAN Emulation
 - ⇒ Broadcast and Unknown Server (BUS)
- 2. MPOA
 - ⇒ Multicast Address Resolution Server (MARS)
- 3. VC Mesh: Overlaid pt-mpt Connections
- 4. Multicast Server (MCS)
- 5. SEAM
- 6. SMART
- 7. VP Multicasting
- 8. Subchannel multicasting
 The Ohio State University

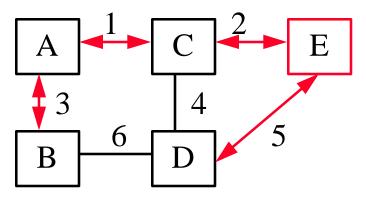
IP Multicast over ATM

- Need to resolve IP multicast address to ATM address list ⇒ Multicast Address Resolution Servers (MARS)
- Multicast group members send IGMP join/leave messages to MARS
- Hosts wishing to send a multicast send a resolution request to MARS

Overlaid pt-mpt Connections


- Also known as VC Mesh
- Each sender in the group establishes a pt-mpt connection with all members
- □ Problem: VC explosion, new members should be advertised and joined

The Ohio State University


Multicast Server (MCS)

- All hosts send to MCSMCS has a single mpt VC to all members
- MCS serializes the packets ⇒ Does not intermingle cells of packets from different incoming VCs
- Problems with MCS:
 - □ Reflected packets
 - □ Single point of congestion
- Better for dynamic set of receivers

The Ohio State University

SEAM

- Scalable and Efficient ATM Multipoint-tomultipoint Communication
- Uses core-based tree
- At merging points, switches have to store all cells of a packet (reassembly is not required)
 - ⇒ Packet switching (Authors call it "cut through")
- Ref: M. Grossglauser and K.K. Ramakrishnan, ATM Forum/96-1142, August 1996.

The Ohio State University

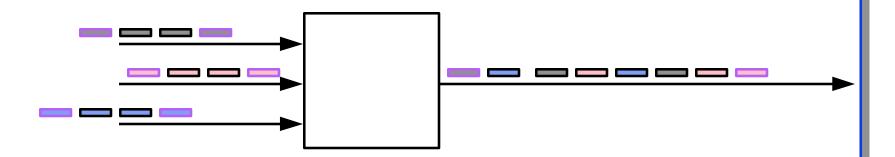
SMART

- Shared Many-to-many ATM Reservations
- Needs only one VCC but allows using multiple VCCs for performance and reliability
- Limits to one transmitter at a time.
 Token holder (root) can transmit.
- Anyone wishing to transmit data, must request the token from current root and become new root.
- □ Ensures that there only one transmitter in the tree⇒ No cell interleaving
- □ Ref: E. Gauthier, et al, IEEE JSAC, April 1997

SMART (Cont)

- Data blocks delineated by RM cells
- Not scalable for very large ATM networks or for small interactions

The Ohio State University


VP Multicasting

- A single VP is setup connecting all nodes
- Each is given a unique VCI within the VP
- Problem: Size limited
- □ VPs are used by carriers for other purposes

Subchannel Multicasting

- Used in Washington University's Giga Switch
- Use GFC to provide 15 subchannels for each VC (FF indicates idle subchannel)
- Each burst is preceded and followed by "Start" and "End" RM cells.
- Subchannel is allocated on the first RM cell and released on the last.
- Subchannel IDs are changed at every switch (just like VC IDs)

- Allows multiplexing up to 15 simultaneous packets at each switch port per VC.
- ☐ If a Start RM cell is received and no subchannel is available, the burst is lost.
- □ Jon Turner claims the loss probability is less than 10⁻¹²

The Ohio State University

- Multipoint communication is required for many applications and network operations
- Network and transport support
- Internet community has developed and experimented with many solutions for multipoint communication
- □ ATM solutions are being developed

The Ohio State University

Key References

- C. Huitema, "Routing in the Internet," Prentice-Hall, 1995
- C. Diot, et al, "Multipoint Communication: A Survey of Protocols, Functions, and Mechanisms," IEEE JSAC, April 1997, pp. 277-290.
- □ T. Maufer and C. Semeria, "Introduction to IP Multicast Routing," March 1997, http://www.internic.net/internet-drafts/draft-ietf-mboned-intro-multicast-02.txt
- □ S. Fahmy, et al, "Protocols and Open Issues in ATM Multipoint Communications," http://www.cis.ohio-state.edu/~jain/papers/mcast.htm
- □ See http://www.cis.ohio-state.edu/~jain/refs/mul_refs.htm for further references.

The Ohio State University

IP Multicast Addresses

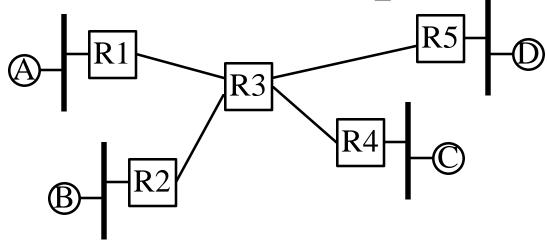
- □ Class D: Begin with 1110*.*.*.*
- □ 224.0.0.0 through 239.255.255.255

1110 Host Group (Multicast) 28 bits

Multicasting Transport Protocols

- Scalable Reliable Multicast (SRM)
- Reliable Multicast Transport Protocol (RMTP) by Shiroshita, et al
- □ Reliable Multicast Transport Protocol (RMTP) by S. Paul, et al

SRM


- Scalable Reliable Multicast
- □ Reliable ⇒ All receivers receive all data sent to a multicast group from different sources.
- No ordering across different sources.
- □ Problem: Unicast reliability algorithms (timeout and retransmission) depend upon RTT and cannot be used for dynamic multicast trees

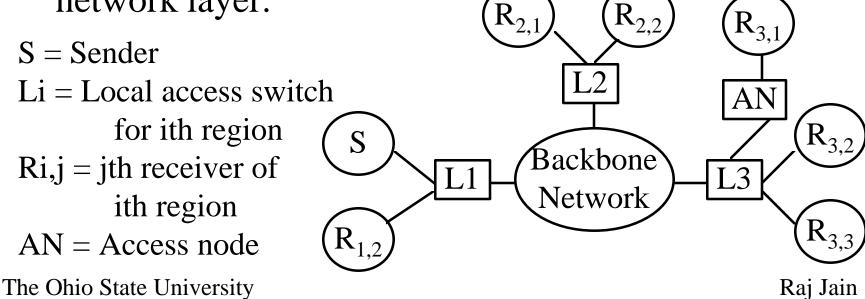
SRM Design Principles

- □ Application level framing ⇒ Applications responsible for reliability (not transport).
- Each receiver responsible to ensure that it has all data.
- Group members send quasi-periodic session messages to report their current state.
- Receivers detect errors and request repair
- Any node with the data can reply

- All requests and replies are multicast
- Wait random time to minimize duplicate request/responses
- Recovery overhead can be reduced by limiting the scope of request and repair multicasts.

SRM Example

- A sends two packets
- One of the packets is lost
- D sends a request for the lost packet
- □ C retransmits the lost packet


RMTP

- Reliable Multicast Transport Protocol
- Runs over UDP over IP Multicast
- Receivers send nacks to indicate missing packets
- Source retransmits missing packets via either multicast or unicast (depending upon the number of Nacks)

Ref: Shiroshita, et al, http://www.internic.net/internet-drafts/draft-shiroshita-rmtp-spec-00.txt

RMTP

- Reliable Multicast Transport Protocol
- Hierarchical division of network into regions
- □ Each region has a "designated receiver" (DR)
- A distribution tree containing all nodes is created by network layer.

- DRs send periodic status to source.
 Includes requests for retransmission.
- Sources retransmit only to DRs.
- Other receivers send periodic status to their DR.
 DRs retransmit in the region.

Ref: S. Paul, et al, IEEE JSAC, April 1997