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q Introduction to point-to-multipoint ABR

q Basic ABR pt-mpt Resource Allocation

q Extension/optimization of pt-mpt algorithms

q Mpt-pt: What should be the goal of allocation?

q Extension of ERICA to mpt-pt

OverviewOverview
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Point-to-Point ABRPoint-to-Point ABR

q Sources send one RM cell every n cells

q The RM cells contain “Explicit rate”

q Destination returns the RM cell to the source

q The switches adjust the rate down

q Source adjusts to the specified rate

A B

Explicit RateExplicit RateCurrent Cell RateCurrent Cell Rate
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ERICA+ERICA+
q Time is slotted into averaging intervals
q ABR capacity = [link capacity

− (VBR + CBR load)] × f(queue length)
q Estimate input rate = Σ CCRj
q overload = input rate/ABR capacity
q ERj_efficiency = CCRj/overload
q ER_fairshare = ABR capacity/# of active sources
q IF overload ≤ 1+ δ THEN ERj =
       max (ERj_efficiency, ER_fairshare, maxERprevious)
    ELSE ERj = max(ERj_efficiency, ER_fairshare)
q maxERcurrent = max(maxERcurrent, ERj)
q ER in BRMj = min(ER in BRMj, ERj)
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Point-to-Multipoint ABRPoint-to-Multipoint ABR

RM Cellmin(B,C)

RM CellA

RM Cell A

RM Cell B

RM CellA
RM Cellc

A B

C
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Basic Pt-Mpt: ResultsBasic Pt-Mpt: Results
q ABR with ERICA (extended for multipoint) works ok

q Efficiency, fairness, responsiveness is maintained

q Consolidation noise due to asynchronous arrival of
feedback from different leaves appears as oscillations

q Additional delay due to FRM wait and BRM
consolidation
⇒ slower transient response than point-to-point

q Minimum of all paths is allocated
⇒ Some links are underutilized

q Queue control (ERICA+) is required for stability
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Consolidation NoiseConsolidation Noise

q Feedback oscillates between 70 and 140.

140

70
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Point-to-MultipointPoint-to-Multipoint
Connections: IssuesConnections: Issues

q If you send BRM on every FRM, you may give
feedback without receiving any
⇒ Need to ensure that at least one feedback has been
received before sending a BRM.
Otherwise, you may give PCR

q Not all downstream feedbacks in an upstream
feedback ⇒ consolidation noise

q Conclusion: Feedback should not be FRM driven
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ScalabilityScalability
q If the feedback is BRM driven:

Should we wait for BRMs from all branches?
Yes ⇒ Delay may be long. Non-responsive branches?
No ⇒ Number of BRMs >> FRMs

= FRM = data = BRM

Root

Leaf 1

Leaf 2

Branch
Point

Branch
Point

Leaf 3
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Previous AlgorithmsPrevious Algorithms
q Algorithm 1: Simply turn around FRM cells with the

current minimum and reset minimum

m Feedback may be sent without receiving any

m Partial feedback ⇒ Noise

q Algorithm 2: Turn around FRM only if at least one
BRM has been received since last BRM was sent

m Solves “no feedback problem” but has noise

q Algorithm 3: Do not turn around FRM cells. Simply
flag the receipt of the FRM, and return the first BRM
(with modified fields) to arrive after that

m Solves “no feedback problem” but has noise
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q Algorithm 4: Wait till BRMs are received from all
branches after last BRM was sent, and return the last
one (with modified fields)

m Transient response too slow
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New AlgorithmsNew Algorithms

q Algorithm 5 (new): If the ER in the BRM is much
less than the last ER sent (or CCR), do not wait ⇒
send the BRM, but do not reset the values: reset when
feedback from all leaves is received

m BRM to FRM ratio may exceed one

q Algorithm 6: For every premature BRM cell,
increment a counter. Decrement the counter the next
time a BRM giving a higher rate than the last sent is to
be returned, but do not return the BRM

m Overload at the current switch may not be fedback
in a timely manner
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New Algorithms (Cont)New Algorithms (Cont)

q Algorithm 7: When a BRM is received, invoke the
switch algorithms for all outgoing branches before
deciding whether to send feedback
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Simulation Results 2Simulation Results 2

q Algorithms 1, 2, 3: noise, unfair, unstable

q Algorithms 4, 5, 6: no noise, but slow response

q Algorithm 7: no noise and fast response
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Complexity   High   High    Low      Med   >Med  >Med   >>Med
Transient                                                          Fast for      Very fast
Response       Fast    Med     Med     Slow      overload     for overld
Noise             High   Med    High     Low     Low     Low    Low
BRM:FRM      1       < 1        < 1       < 1     may>1 lim=1   lim=1
Sensitivity to
branch points
and levels       High   High    Low    Med     >Med   Med    Med

Algorithm         1           2           3          4          5          6           7

Performance ComparisonPerformance Comparison

q Studied 4 existing and 3 new algorithms.
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MultipointMultipoint
Consolidation: ResultsConsolidation: Results

q Consolidation algorithms offer tradeoffs
between complexity, transient response, noise,
overhead and scalability

q The new algorithms 6 and 7 speed up the transient
response, while eliminating consolidation noise and
controlling overhead
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Root

Leaf 1

Leaf 2

Merge
 Point

100

100

110000

Multipoint-to-Point VCsMultipoint-to-Point VCs

q Problem with AAL5: Cell interleaving.

q VP merge: VCI = sender ID
VPs are used for other purposes.

q VC merge: Buffer at merge point till EOM bit = 1.
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Sources, VCs, and FlowsSources, VCs, and Flows

q Sw2 has to deal with

m Two VCs: Red and Blue

m Four sources: Three red sources and one blue
source

m Three flows: Two red flows and one blue

Sw1 Sw2
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Fairness DefinitionsFairness Definitions

q Source-based:
N-to-one connection = N one-to-one
connections ⇒ Use max-min fairness among sources

q VC/Source-based: Allocate bandwidth among VCs
For each VC, allocate fairly among its sources

q Flow-based: Flow = VC coming on an input link.
Switch can easily distinguish flows.

q VC/Flow-based:

1. Allocate bandwidth fairly among VCs

2. For each VC, allocate fairly among its flows
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S1 Sw1

dS1

dSA

Sw3

S3

SA

Sw2

S2

LINK1 LINK2
LINK3

All links are 150 Mbps

ExampleExample

q How is the bandwidth of LINK3 allocated?

q Source: {S1, S2, S3, SA}←{37.5, 37.5, 37.5, 37.5}

q VC/Source: {S1, S2, S3, SA}←{25, 25, 25, 75}

q Flow: {S1, S2, S3, SA}←{25, 25, 50, 50}

q VC/Flow: {S1, S2, S3, SA}←{18.75, 18.75, 37.5, 75}

Sw4
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Root
Leaf 1

Leaf 2

Merge
 Point

100

100
100100

Mpt-pt IssuesMpt-pt Issues

q Cells of senders in the same multipoint-to-point VC
cannot be distinguished

q Question: Can we achieve source-based fairness?
Answer: Yes!

q We extended ERICA to achieve source based fairness
for mpt-pt VCs
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Changes to ERICA+Changes to ERICA+

q Remove fair share term (# active sources)

q Options:

m Use CCRjmax instead of CCRj
Maximum is calculated in successive intervals

m To minimize oscillations, use exponential
averaging options for:

q Input rate

q ABR capacity

q maxERprevious



Raj JainThe Ohio State University

23

= FRM = data = BRM

Root
Leaf 1

Leaf 2

Merge
 Point

Merging Point AlgorithmMerging Point Algorithm

q Maintain a bit at the merging point for each flow
being merged
Bit = 1 ⇒ FRM received from this flow after BRM
sent to it

q BRMs are duplicated and sent to flows whose bits are
set, then bits are reset
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Simulation ParametersSimulation Parameters

q Unidirectional traffic

q RIF = 1/32, 1

q Rule 6 disabled

q Queue control: a = 1.15, b = 1, drain limit = 50%,
target queuing delay = 1.5 s

q Measurement interval = 5 ms, 200 µs

q One cell long packets (Avoids VC merging issues)

q Max CCR and averaging maxERprevious used

q Link lengths in kms: {LINK1, LINK2, LINK3} =
{50, 500, 5000}, {5000, 500, 50}
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S1 Sw1 Sw4 dS1

dSA

Sw3

S4

SA

Sw2

S3

LINK1 LINK2 LINK3

All links are 150 Mbps, except LINK1 which is 50 Mbps

S2

Upstream BottleneckUpstream Bottleneck
q Goal:{S1,S2,S3,S4,SA}

←{16.7,16.7,58.3,58.3,16.7}

q ICRs:{S1,S2,S3,S4,SA}←{20,20,30,80,10}

q Results are similar with different link lengths,
RIF = 1/32, 1, interval length = 5 ms, 200 µs (no RMs
for S1,S2 ,SA for 4 intervals; for S3,S4 for 1 interval)
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WAN 4-leaf with upstream bottleneck: ACRs
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Simulation ResultsSimulation Results
q Upstream Bottleneck, LINK3 = 5000 km,

 RIF = 1, interval = 5 ms
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Queue LengthsQueue Lengths
WAN 4-leaf with upstream bottleneck
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Link UtilizationLink Utilization

Link 1 and 3

Link 2
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Lessons LearntLessons Learnt
q Avoid determining the effective number

of active sources

q Avoid estimation of rates of sources, or
determining if a source is bottlenecked at this link

q Use only per-VC or per-port measurements and not
per-flow or per-source

q Do not use CCR values from BRM cells
CCR from FRM cells can be used

155 Mbps

45 Mbps
100
1.51.5

100
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SummarySummary

q ERICA+ modified for pt-mpt works ok

q Additional delay due to FRM wait and BRM
consolidation ⇒ slower transient response than pt-pt

q Two new algorithms 6 and 7 speed up the transient
response, while eliminating consolidation noise and
controlling overhead

q Four Different Fairness Definitions: source, flow,
VC/Source, VC/flow

q Source-based fairness can be achieved even though
sources can not be distinguished in an mpt-pt VC
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