

- 1. MPLS Overview
- 2. Traffic Engineering using MPLS
- 3. Our Simulation Results
- 4. Other QoS Approaches and their Interoperability with MPLS

Part 1: MPLS Overview

- **□** Routing vs Switching
- Label Switching Concepts
- Label Stacks
- Label Distribution Protocol
- Independent vs Ordered Control

Routing vs Switching 164.107.61.201

- □ Routing: Based on address lookup. Max prefix match.
 - \Rightarrow Search Operation
 - \Rightarrow Complexity \approx O(log₂n)
- Switching: Based on circuit numbers
 - \Rightarrow Indexing operation
 - \Rightarrow Complexity O(1)
 - \Rightarrow Fast and Scalable for large networks and large address spaces
- These distinctions apply on all datalinks: ATM, Ethernet, SONET

 \Rightarrow Do not need to reassemble IP datagrams

Fact

Label Switching

- \Box Label = Circuit number = VC Id
- Ingress router/host puts a label. Exit router strips it off.
- ❑ Switches switch packets based on labels.
 Do not need to look inside ⇒ Fast.

MPLS

- Multiprotocol Label Switching
- IETF working group to develop switched IP forwarding
- Initially focused on IPv4 and IPv6.
 Technology extendible to other L3 protocols.
- □ Not specific to ATM. ATM or LANs.
- □ Not specific to a routing protocol (OSPF, RIP, ...)

MPLS Terminology

- Label = Short fixed length, physically contiguous, locally significant
- □ Label Switching Router (LSR): Routers that use labels
- □ Forwarding Equivalence Class (FEC): Same Path + treatment \Rightarrow Same Label
- MPLS Domain: Contiguous set of MPLS nodes in one Administrative domain
- □ MPLS edge node = Egress or ingress node
- □ Label distribution protocol \cong Routing protocols

Label Stacks

- □ A MPLS packet may have multiple labels
- Labels are pushed/popped as they enter/leave MPLS domain
- □ Stack allows hierarchy of MPLS domains
- □ Bottom label may indicate protocol (0=IPv4, 2=IPv6)

Label Stack Entry Format

- □ Labels = Explicit or implicit L2 header
- $\Box TTL = Time to live$
- \Box Exp = Experimental
- □ SI = Stack indicator, $1 \Rightarrow$ Bottom of Stack

Label Assignment

- ❑ Unsolicited: Topology driven ⇒ Routing protocols exchange labels with routing information.
 Many existing routing protocols are being extended: BGP, OSPF
- On-Demand:
 - \Rightarrow Label assigned when requested,
 - e.g., when a packet arrives \Rightarrow latency
- A new Label Distribution Protocol called LDP is being defined.
- RSVP is being extended to allow label request and response

The Ohio State University

Label Distribution Protocol

- LDP peers: LSRs that exchange LDP messages.
 Using an LDP session.
- □ LDP messages:
 - Session establishment/termination messages
 - Discovery messages to announce LSRs (Hello)
 - Advertisement msgs to create/delete/change label
 - Notification messages for errors and advice
- Discovery messages are UDP based. All others TCP.
- □ Hello messages are sent on UDP port 646.
- Session establishment messages sent on TCP port 646.
 No multicast, multipath, or QoS in the first version. Raj Jain

LDP Messages

- Hello
- □ Initialization
- Label Request
- □ Label Mapping (Label Response)
- □ Label Withdraw (No longer recognized by downstream)
- □ Label Release (No longer needed by upstream)
- Label Abort Request
- □ KeepAlive
- Notification
- □ Address (advertise interface addresses)
- □ Address Withdraw
- Vendor-Private
- **Experimental**

The Ohio State University

LDP TLVs

- □ FEC (Wild card, prefix, or host address)
- Address List
- **General Hop Count**
- Path Vector
- Generic Label
- ATM Label
- □ Frame Relay Label
- Status
- Extended Status
- **Returned PDU**
- Returned Message
- Common Hello parameters

Independent vs Ordered Control

- Independent: Each router issues Labels for FECs. May cause loops.
- □ Ordered: A router issues labels for an FEC only if it is the egress router or if it has received a label from the next hop ⇒ Use LSP only after it is fully setup
- Use ordered LSP control if you need QoS for LSP
- □ LSRs can use either method.

MPLS Over ATM

- With MPLS software, ATM switches can act as LSRs.
- □ VPI/VCI fields are used for labels.
- \Box No Stack bit \Rightarrow Maximum two possible levels of hierarchy: VCI, VPI All ATM switches should use the same encoding.
- \Box No TTL field \Rightarrow Hops between ingress and egress can be computed during LSP setup. Ingress router drops if TTL < hops to egress
- □ ATM LSRs need to participate in network layer routing protocols (OSPF, BGP)
- □ VPI/VCI space may be segmented for label switching and normal ATM switching Raj Jain

Stream Merging

- Required for egress based labels. Helpful for mpt-topt streams.
- □ In ATM/AAL5, cells of frames on the same VC cannot be intermingled \Rightarrow VCs cannot be merged.
- □ VC-merge: Store all cells of a frame and forward together ⇒ Need more buffering. Delay.
- \Box VP Merge: VPI = Labels, VCI = source

Summary of Part 1: MPLS

- MPLS combines the best of ATM and IP.
 Works on all media: ATM and non-ATM.
- Label is similar to circuit number or VC Id.
- □ Label stacks allow hierarchy of MPLS domains.
- Common routing protocols and RSVP are being extended to include label exchange.

LDP allows independent or ordered control

Part 2: Traffic Engineering

- Objectives and Mechanisms
- Traffic Trunks
- CR-LDP
- Explicit Route
- Priority and Preemption
- □ Traffic Engineering Extensions to OSPF and IS-IS

Traffic Engineering Objectives

- ❑ User's Performance Optimization
 ⇒ Maximum throughput, Min delay, min loss, min delay variation
- □ Efficient resource allocation for the provider
 - \Rightarrow Efficient Utilization of all links
 - \Rightarrow Load Balancing on parallel paths
 - \Rightarrow Minimize buffer utilization
 - Current routing protocols (e.g., RIP and OSPF) find the shortest path (may be over-utilized).
- QoS Guarantee: Selecting paths that can meet QoS
- □ Enforce Service Level agreements
- □ Enforce policies: Constraint based routing \supseteq QoSR

The Ohio State University

Traffic Engineering Components

- 1. Signaling: Tell the network about traffic and QoS. Admission Control: Network may deny the request.
- 2. Shaping: Smoothen the bursts
- 3. Policing: Ensure that users are following rules
- 4. Routing: Path Selection, Request Prioritization, Preemption, Re-optimization/Pinning, Fault Recovery
- 5. Scheduling: Weight, Prioritization, Preemption
- 6. Buffer Management: Drop Thresholds, Drop Priority
- 7. Feedback: Implicit, Explicit
- Accounting/Billing

Performance Monitoring/Capacity Planning

MPLS Mechanisms for TE

- □ Signaling, Admission Control, Routing
- □ Explicit routing of LSPs
- Constrained based routing of LSPs
 Allows both Traffic constraints and Resource
 Constraints (Resource Attributes)
- □ Hierarchical division of the problem (Label Stacks)
- Traffic trunks allow aggregation and disaggregation (Shortest path routing allows only aggregation)

- □ Trunk: Aggregation of flows of same class on same LSP
- **Trunks are routable**

 \Rightarrow LSP through which trunk passes can be changed

□ Class \Rightarrow Queue, LSP \Rightarrow Next hop Class can be coded in Exp or Label field. Assume Exp.

Flows, Trunks, LSPs, and Links

- Label Switched Path (LSP):
 Path for all packets with the same label
- Trunk: Same Label+Exp
- □ Flow: Same MPLS+IP+TCP headers

Traffic Trunks

- Each traffic trunk can have a set of associated characteristics, e.g., priority, preemption, policing
- Some trunks may preempt other trunks. A trunk can be preemptor, non-preemptor, preemptable, or nonpreemptable.
- Trunk paths are setup based on policies or specified resource availability.
- A traffic trunk can have alternate sets of paths in case of failure of the main path. Trunks can be rerouted.
- Multiple LSPs can be used in parallel to the same egress. The Ohio State University

Trunk Attributes

- □ **Signaling**: Routing Protocols, RSVP, CR-LDP
- □ Admission Control: Network may deny the request.
- **Policing**: Token Bucket
- □ Shaping: Smoothen the bursts
- Routing: Path Selection, Request Prioritization, Preemption, Re-optimization/Pinning, Fault Recovery
- □ Scheduling: Class Weight, Prioritization, Preemption
- □ Buffer Management: Class drop thresholds/priority
- □ Feedback: Implicit, Explicit (ICMP being discussed)
- □ Accounting/Billing
- Performance Monitoring/Capacity Planning

The Ohio State University

The Ohio State University

Token and Leaky Bucket

Traffic Granularity

- □ Same label ⇒ Same port quadruples (source/destination address, IP protocol, source/destination port)
- □ Same QoS + Port quadruples
- □ Same host pair (Source/destination address)
- Same network pairs
 (Source/destination address prefixes)
- □ Same destination network
- □ Same Egress router

Traffic Granularity (Cont)

- □ Same BGP next hop AS
- □ Same BGP destination AS
- □ Same Shared multicast tree (*,G)
- □ Same Source specific multicast tree (S,G)

CR-LDP

- □ Extension of LDP for constraint-based routing (CR)
- □ New Features:
 - Traffic parameters
 - Explicit Routing
 - Preemption of existing route. Based on holding priority of existing route and setup priority of new route
 - Route pinning: To prevent path changes
CR-LDP (Cont)

- □ No new messages
- Enhanced Messages: Label request, Label Mapping, Notification
- New TLVs: Explicit Route, Explicit Route Hop, Traffic, Route Pinning, Resource Class, Pre-emption, LSP Id
- □ Enhanced TLVs: FEC (CRLSP)
- Each setup (label request) message has a unique connection ID (LSPID)

Raj Jain

CR-LSP Setup

- ❑ New CR-TLV ⇒ Use "downstream on demand" label advertisement with ordered control
- □ Similar to ATM connection setup message.
- Egress router indicates the negotiated values in the response (label mapping message)
- Other LSRs return the response towards the ingress and reserve.

The Ohio State University

Raj Jain

- Single-rate dual-token-bucket
- Tokens generated at "Committed Data Rate" (CDR).
 Tokens go to 1st bucket, if full go to the 2nd bucket
- Peak, committed data rate, committed burst size, excess burst size (Dual-bucket single rate)
- Negotiation Allowed
- □ Color Aware \Rightarrow Use incoming drop precedence (DP) Color unaware \Rightarrow Ignore incoming drop precedence The Ohio State University

Explicit Route

- Explicit route specified as a list of Explicit Route Hops (group of nodes)
- Hops can include IPv4 prefix, IPv6 prefix, MPLS tunnels or Autonomous systems
- □ Example: R1-R2-Net B-R7-R8

Explicit Route (Cont)

- □ All or a subset may be traversed
- The list is specified by edge router based on imperfect info (Strict/loose)
 - Strict ⇒ Path must include only nodes from the previous and this abstract node
 - > Loose ⇒ path between two nodes may include other nodes
- Managed like ATM PNNI Designated Transit Lists (DTLs)

Path Selection

- Manual/Administrative
- Dynamically computed
- Explicitly specified: Partially/fully, strict/loose, Mandatory/non-mandatory, Single/Set
- □ Non-Mandatory
 - \Rightarrow Use any available path if specified not available
- $\Box \text{ Set} \Rightarrow \text{Preference ordered list}$
- Resource class affinity

Resource Attributes

- Capacity
- Overbooking Factor: Maximum Allocation Multiplier
- Class: Allows policy enforcement
- Class Examples: secure/non-secure, transit/local-only
- □ A resource can be member of multiple classes

Resource Class Affinity

- □ Each resource has a class
- □ Affinity = Desirability
- □ Binary Affinity: 0 ⇒ Must Exclude, 1 ⇒ Must Include, Not-specified ⇒ Don't care
- Class, affinity> pair can be used to implement policies

Adaptivity and Resilience

- □ Stability: Route pinning
- □ Resource availability is dynamic
- □ Trunks can live for long time
- Adaptivity: Re-optimization when availability changes
- □ Resilience: Reroute if path breaks
- □ Adaptivity \Rightarrow Resilience. Resilience / \Rightarrow Adaptivity
- □ Idea: Adaptivity is not binary \Rightarrow Rerouting period

Priority and Preemption

- Preemptor-enabled: Can preempt other trunks
- □ Non-Preemptor: Can't preempt other trunks
- □ Preemptable: Can be preempted by other trunks
- □ Non-Preemptable: Can't be preempted by other trunks
- These attributes and priority are used to decide preemption

Traffic Engineering Extensions to OSPF

- □ Add to Link State Advertisements:
- TE Metric: May be different from standard OSPF link metric
- Maximum bandwidth
- Maximum Reservable Bandwidth: May be more than maximum bandwidth
- Unreserved Bandwidth
- □ Resource Class/color
- Ref: draft-katz-yeung-ospf-traffic-00.txt

TE Extensions to OSPF (Cont)

- Link Delay and Link Loss rate also proposed in draftwimer-ospf-traffic-00.txt
- In path calculations, TE tunnels are used as links to tunnel egress

Traffic Engineering Extensions to IS-IS

- □ Add to Link State Protocol Data Units:
- **TE** Metric
- Maximum bandwidth
- Maximum Reservable Bandwidth: May be more than maximum bandwidth
- Unreserved Bandwidth
- Resource Class/color
- □ Ref: draft-ietf-isis-traffic-01.txt

Summary of Part 2: Traffic Engg

- Goal of traffic engineering is to optimize performance for users and providers and ensure QoS
- MPLS traffic trunks are like ATM VCs that can be routed based on explicit route or policies
- CR-LDP allows explicit routing, constraint-based routing, traffic parameters, and QoS
- OSPF and IS-IS is being modified for traffic engg

A Simulation Analysis of Traffic Engineering

Simulation Model

Given Simulation Scenarios

• Case 1: No Trunks, No MPLS

• Case 2: Two trunks w UDP + TCP Mixed

• Case 3: Three Trunks w Isolated TCP, UDP

• Case 4: Non End-to-End Trunks

Given Setup Future Work

Simulation Scenarios

- 1. Normal IP with Best Effort routing
- 2. Two trunks using Label Switched Paths
 - **o** Trunk 1: R1-R2-R3-R5-R6
 - TCP and UDP sources are multiplexed over this trunk
 - **o** Trunk 2: R1-R2-R4-R5-R6
 - Only TCP sources over this trunk
- 3. Three trunks using Label Switched Paths
 - All three flows are isolated.
- 4. Non End-to-end trunks.

Future Work

- □ Other Traffic Scenarios:
 - Aggregate flows: TCP+UDP
 - Short duration TCP connections
 - Bursty (Web) traffic
- □ Queue Service Policies: WFQ, WF2Q, WF2Q+
- □ Packet drop policies: RED, Tail drop
- **Given Service And Service And The Round Trip Time**
- □ TCP parameters: MSS, window size, etc.
- DiffServ vs MPLS, DiffServ+MPLS

Summary of Part 3: TE Analysis

- Total network throughput improves significantly with proper traffic engineering
- Congestion-unresponsive flows affect congestionresponsive flows

• Separate trunks for different types of flows

□ Trunks should be end-to-end

• Trunk + No Trunk = No Trunk

Part 4: Other QoS Approaches and MPLS Interoperability

- □ ATM
- Integrated Services/RSVP
- Differentiated Services
- □ IEEE 802.1D

The Ohio State University

ATM Service Categories

- **CBR**: Throughput, delay, delay variation
- □ **rt-VBR**: Throughput, delay, delay variation
- □ **nrt-VBR**: Throughput
- **UBR**: No Guarantees
- **GFR**: Minimum Throughput
- ABR: Minimum Throughput. Very low loss. Feedback.
- □ ATM also has QoS-based routing (PNNI)

ATM QoS: Issues

- \Box Can't easily aggregate QoS: VP = Σ VCs
- Can't easily specify QoS: What is the CDV required for a movie?
- □ Signaling too complex \Rightarrow Need Lightweight Signaling
- Need Heterogeneous Point-to-Multipoint: Variegated VCs
- Need QoS Renegotiation
- Need Group Address
- Need priority or weight among VCs to map DiffServ and 802.1D

□ MPLS also has many of these problems.

Raj Jain

Integrated Services

- □ Best Effort Service: Like UBR.
- Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances. Like nrt-VBR or UBR w MCR
- Guaranteed Service: rt-VBR
 - Firm bound on data throughput and <u>delay</u>.
 - Delay jitter or average delay not guaranteed or minimized.
 - Every element along the path must provide delay bound.
 - Is not always implementable, e.g., Shared Ethernet.
 Like CBR or rt-VBR

The Ohio State University

Raj Jain

RSVP

- Resource ReSerVation Protocol
- Internet signaling protocol
- Carries resource reservation requests through the network including traffic specs, QoS specs, network resource availability
- □ Sets up reservations at each hop

Problems with IntServ/RSVP

- Complexity in routers: packet classification, scheduling
- □ Per-Flow State: O(n) ⇒ Not scalable with # of flows.
 Number of flows in the backbone may be large.
 ⇒ Suitable for small private networks
- Need a concept of "Virtual Paths" or aggregated flow groups for the backbone
- Need policy controls: Who can make reservations?
 Support for accounting and security.
 - \Rightarrow RSVP admission policy (rap) working group.

Problems (Cont)

- □ Receiver Based:
 - Need sender control/notifications in some cases. Which receiver pays for shared part of the tree?
- Soft State: Need route/path pinning (stability).
 Limit number of changes during a session.
- □ RSVP does not have negotiation and backtracking
- □ Throughput and delay guarantees require support of lower layers. Shared Ethernet ⇒ IP can't do GS or CLS. Need switched full-duplex LANs.
- □ MPLS solves many of these problems.

- □ IntServ is more complex and will be less widely implemented.
- □ MPLS over IntServ: Not a realistic scenario.
- □ IntServ over MPLS:
 - MPLS can provide controlled service, guaranteed service and best effort services without the need for classification at each hop.

Differentiated Services

Ver	Hdr Len	Precedence	ToS	Unused	Tot Len
4b	4b	3b	4b	1b	16b

- □ IPv4: 3-bit precedence + 4-bit ToS
- OSPF and integrated IS-IS can compute paths for each ToS
- ❑ Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- **DS** working group formed February 1998
- □ Charter: Define ds byte (IPv4 ToS field)
- □ Mail Archive: <u>http://www-nrg.ee.lbl.gov/diff-serv-arch/</u>

DiffServ Concepts

- □ Micro-flow = A single application-to-application flow
- Traffic Conditioners: Meters (token bucket), Markers (tag), Shapers (delay), Droppers (drop)
- Behavior Aggregate (BA) Classifier:
 Based on DS byte only
- Multi-field (MF) Classifiers:
 Based on IP addresses, ports, DS-byte, etc..

Diff-Serv Concepts (Cont)

- □ Service: Offered by the protocol layer
 - Application: Mail, FTP, WWW, Video,...
 - Transport: Delivery, Express Delivery,... Best effort, controlled load, guaranteed service
 - DS group will not develop services
 They will standardize "Per-Hop Behaviors"

- Externally Observable Forwarding Behavior
- □ x% of link bandwidth
- □ Minimum x% and fair share of excess bandwidth
- □ Priority relative to other PHBs
- PHB Groups: Related PHBs. PHBs in the group share common constraints, e.g., loss priority, relative delay

Expedited Forwarding

- Also known as "Premium Service"
- Virtual leased line
- □ Similar to CBR
- Guaranteed minimum service rate
- Policed: Arrival rate < Minimum Service Rate</p>
- Not affected by other data PHBs
 ⇒ Highest data priority (if priority queueing)
- **Code point: 101 110**

Raj Jain

□ PHB <u>Group</u>

- □ Four Classes: No particular ordering
- □ Three drop preference per class

Assured Forwarding (Cont)

- DS nodes SHOULD implement all 4 classes and MUST accept all 3 drop preferences. Can implement 2 drop preferences.
- □ Similar to nrt-VBR/ABR/GFR

Code Points:

Drop Prec.	Class 1	Class 2	Class 3	Class 4
Low	010 000	011 000	100 000	101 000
Medium	010 010	011 010	100 010	101 010
High	010 100	011 100	100 100	101 100

□ Avoids 11x000 (used for network control)

The Ohio State University

Problems with DiffServ

□ per-hop ⇒ Need at every hop
 One non-DiffServ hop can spoil all QoS
 This applies to almost all QoS approaches.

□ End-to-end
$$\neq \Sigma$$
 per-Hop

Designing end-to-end services with weighted guarantees at individual hops is difficult. Only EF will work.

- Designed for <u>static</u> Service Level Agreements (SLAs)
 Both the network topology and traffic are highly dynamic.
- \Box Multicast \Rightarrow Difficult to provision

 $\underset{\text{ne Ohio State University}}{\text{Dynamic multicast membership}} \Rightarrow \text{Dynamic SLAs}_{\text{Raj}}^{2}$

DiffServ Problems (Cont)

- \Box DiffServ is unidirectional \Rightarrow No receiver control
- ❑ Modified DS field ⇒ Theft and Denial of service. Ingress node should ensure.
- How to ensure resource availability inside the network?
- QoS is for the aggregate not per-destination.
 Multi-campus enterprises need inter-campus QoS.

DiffServ Problems (Cont)

- QoS is for the aggregate not micro-flows. Not intended/useful for end users. Only ISPs.
 - Large number of short flows are better handled by aggregates.
 - Long flows (voice and video sessions) need perflow guarantees.
 - High-bandwidth flows (1 Mbps video) need perflow guarantees.
- □ All IETF approaches are open loop control \Rightarrow Drop Closed loop control \Rightarrow Wait at source Data prefers waiting \Rightarrow Feedback The Ohio State Universit

DiffServ Problems (Cont)

Guarantees ⇒ Stability of paths
 ⇒ Connections (hard or soft)
 Need route pinning or connections.

The Ohio State University

- MPLS is borrowing the best of DiffServ and can be end-to-end.
- □ MPLS over DiffServ:
 No end-to-end guarantees ⇒ Not useful
- DiffServ over MPLS:
 - DS byte can be encoded in CR-LDP label requests and responses.

- MPLS over 802.1D: Priority among packets at the same node. Lower priority traffic from other nodes can get through.
- □ 802.1D Traffic over MPLS:
 - Packet priority can be encoded in Exp field, label
 - Trunk priority can be encoded in CR-LDP label requests and responses.

End-to-end View

- ATM/PPP backbone, Switched LANs/PPP in Stub
 IntServ/RSVP, 802.1D, MPLS in Stub networks
- DiffServ, ATM, MPLS in the core

QoS Debate Issues

- Massive Bandwidth vs Managed Bandwidth
- Per-Flow vs Aggregate
- Source-Controlled vs Receiver Controlled
- □ Soft State vs Hard State
- Path based vs Access based
- Quantitative vs Qualitative
- □ Absolute vs Relative
- End-to-end vs Per-hop
- □ Static vs Feedback-based
- One-way multicast vs n-way multicast
- Homogeneous multicast vs heterogeneous multicast
- □ Single vs multiple bottlenecks: Scheduling

The Ohio State University

Comparison of QoS Approaches

Issue	ATM	IntServ	DiffServ	MPLS	IEEE 802.3D
Massive Bandwidth vs Managed Bandwidth	Managed	Managed	Massive	Managed	Massive
Per-Flow vs Aggregate	Both	Per-flow	Aggregate	Both	Aggregate
Source-Controlled vs Receiver Controlled	Unicast Source, Multicast both	Receiver	Ingress	Both	Source
Soft State vs Hard State	Hard	Soft	None	Hard	Hard
Path based vs Access based	Path	Path	Access	Path	Access
Quantitative vs Qualitative	Quantitativ e	Quantitativ e+Qualitati ve	Mostly qualitative	Both	Qualitative
Absolute vs Relative	Absolute	Absolute	Mostly Relative	Absolute plus relative	Relative Rai Iain

Comparison (Cont)

Issue	ATM	IntServ	DiffServ	MPLS	IEEE 802.3D
End-to-end vs Per- hop	e-e	e-e	Per-hop	e-e	Per-hop
Static vs Feedback- based	Both	Static	Static	Static	Static
One-way multicast vs n-way multicast	Only one- way				
Homogeneous multicast vs heterogeneous multicast	Homogene ous	Heterogen eous	N/A	Homogene ous	N/A
Single vs multiple bottlenecks: Scheduling	Multiple bottleneck	Multiple		Multiple	

- MPLS is taking the best features of ATM, IntServ, DiffServ, and 802.1D QoS approaches
 - \Rightarrow MPLS is most promising
- MPLS provides a superset of functionality of many of these other technologies
- $\Box \text{ Features} \Rightarrow \text{Complexity}$

Complexity has to be controlled.

The Ohio State University

References

- References on MPOA, MPLS, and IP Switching, <u>http://www.cis.ohio-state.edu/~jain/refs/ipsw_ref.htm</u>
- Quality of Service using Traffic Engineering over MPLS: An Analysis, <u>http://www.cis.ohio-</u> <u>state.edu/~jain/papers/mpls-te-anal.htm</u>
- IP Switching, <u>http://www.cis.ohio-</u> <u>state.edu/~jain/cis788-97/ip_switching/index.htm</u>
- References on QoS over IP, <u>http://www.cis.ohio-state.edu/~jain/refs/ipqs_ref.htm</u>
- IP Switching: Issues and Alternatives, <u>http://www.cis.ohio-state.edu/~jain/talks/ipsw.htm</u> The Ohio State University

References (Cont)

- Quality of Service in IP Networks, <u>http://www.cis.ohio-state.edu/~jain/talks/ipqos.htm</u>
- Requirements for Traffic Engineering over MPLS, <u>draft-ietf-mpls-traffic-eng-01.txt</u>
- Constraint-based LSP Setup using LDP, <u>draft-ietf-</u> <u>mpls-cr-ldp-01.txt</u>
- Optimizing Routing Software for Reliable Internet Growth,

http://www.juniper.net/techcenter/techpapers/optimizi ng-routing-sw.fm.html

References (Cont)

 Cisco - Multiprotocol Label Switching, <u>http://www.cisco.com/warp/public/784/packet/apr99/6</u> <u>.html</u>

