QoS and NGN

Professor Washington University St. Louis, MO 63130 Co-Founder and CTO Nayna Networks, Inc. Santa Clara, CA 95054

International Technology Forum Palo Alto, CA, October 20-21, 2005

These Slides are available at

http:/www.cse.wustl.edu/~jain/talks/itf05qs.htm

ITF 2005 QoS Panel

QoS - Past

- □ **IEEE 802.1D**: Strict priority, Massive bandwidth
- ATM: Classes of Service: CBR, VBR, ABR, UBR
 Difficult to specify cell delay variation
 Difficult to accrete VDD
 - Difficult to aggregate VBR
- □ **Integrated Services:** ATM like services
 - □ Best effort, controlled load, guaranteed service.
 - □ RSVP for signaling. Soft state.
 - □ Per-flow considered too complex for routers
- **Differentiated Services:** Marking in packets
 - Per hop behavior Mechanisms and not services.
 DiffServ is a misnomer.
- □ **MPLS:** End-to-end path setup.

ITF 2005 QoS Panel

QoS Debate

- Massive Bandwidth vs Managed Bandwidth
- Per-Flow vs Aggregate
- Quantitative vs Qualitative
- □ Absolute vs Relative
- □ End-to-end vs Per-hop
- □ Soft State vs Hard State
- Path based vs Access based
- Source-Controlled vs Receiver Controlled

ITF 2005 QoS Panel

Comparison of QoS Approaches

Issue	ATM	IntServ	DiffServ	MPLS	IEEE
					802.1D
Massive Bandwidth vs Managed Bandwidth	Managed	Managed	Massive	Managed	Massive
Per-Flow vs Aggregate	Both	Per-flow	Aggregate	Both	Aggregate
Quantitative vs Qualitative	Quantitativ e	Quantitativ e+Qualitat ive	Mostly qualitative	Both	Qualitative
Absolute vs Relative	Absolute	Absolute	Mostly Relative	Absolute plus relative	Relative
End-to-end vs Per- hop	e-e	e-e	Per-hop	e-e	Per-hop
Soft State vs Hard State	Hard	Soft	None	Hard	Hard
Path based vs Access based	Path	Path	Access	Path	Access
Source-Controlled vs Receiver Controlled	Unicast Source, Multicast both	Receiver	Ingress	Both	Source
Washington University IN-ST-LOUIS	ITF 2005 OoS Pan	el	©2005 Raj Jain		NAYNA

State of the Network: 2005

- Security is most important: All packets go through deep inspections ⇒ Throughput limited by packet inspection, Firewalls, Spam filters
- 2. Wireless (WiFi) is spreading (Intel Centrino) Limited bandwidth ⇒Triple play over wireless needs QoS
- 3. More Cell phones than POTS. Smart Cell phones w PDA, email, video, images ⇒ Mobility
- 4. Voice over Internet Protocol (VOIP) is in the Mainstream \Rightarrow IP QoS vs Application specific QoS
- 5. Terabyte/Petabyte storage (Not VoD) \Rightarrow High-Speed Networking
- 6. Internet is less about communication and more for information retrieval
 Weakington

ITF 2005 QoS Panel

Upcoming Challenges of Networking

- **1.** Size: 4 nodes \Rightarrow 100 M nodes \Rightarrow 4B people \Rightarrow 4T appliances
- 2. Distance: USA \Rightarrow Worldwide \Rightarrow Interplanetary \Rightarrow WAN \Rightarrow LAN \Rightarrow PAN
- **3.** Speed: 128 kbps \Rightarrow 10Mbps \Rightarrow 10Gbps \Rightarrow 1.6 Tbps
- 4. Criteria: Least cost \Rightarrow Policy based (Traffic Mgmt), Power
- **5. Traffic**: Delay-tolerant Data, real-time voice and video, storage and computing
- **6.** Trusted nodes \Rightarrow Secure, virus proof, spam proof, ...
- 7. Stationary Nodes \Rightarrow Mobile Nodes \Rightarrow Mobile Networks
- 8. Stable Links ⇒ Continuous disruption, long outages, Varying quality
- 9. Single ownership ⇒ Multiple Domains ⇒ Hierarchies of ownership
- **10. Heterogeneity**: Single technology \Rightarrow Multiple L1/L2/L3

ITF 2005 QoS Panel

- 1. QoS requirements different for Enterprise and carriers
- 2. Need to design services and not mechanisms
- Application specific QoS mechanisms in addition to TCP/IP
- 4. Significant future challenges in QoS due to scale, mobility, ...

ITF 2005 QoS Panel

