

- □ Integrated services
- Resource Reservation Protocol: RSVP
- Differentiated Services
- **QoS** routing
- □ Multiprotocol Label Switching (MPLS) CoS

Multimedia

ApplicationVideo Conferencing, Telephony, FaxTransportTiming Sync, payload id, error recoveryNetworkQoS, Multicast, SignalingDatalinkAccess Control, Multicast, signalingPhysicalMultiple channels via SDM, FDM, TDM

IETF Groups		
Application	Iptel, fax	
Transport	Avt (RTP), mmusic (RTSP)	
Network	Qosr, MPLS, IntServ, Issl, Diff-serv, RSVP	
Datalink	IEEE 802.1p	
Physical	Broadband Ethernet 10Broad36	

- Senders want to send traffic any time with high load, high burstiness
- □ Receivers expect low delay and high throughput
- Since links are expensive, providers want to minimize the infrastructure
- \Box If one of the three gives in \Rightarrow no problem

The Ohio State University

Raj Jain

Components of QoS Architecture

- 1. Services with different QoS: Service definitions
- 2. Ways for users to communicate what they need: Signaling or admission control
- 3. Ways for providers to ensure that users are following their commitment: Policing/shaping
- 4. Ways for providers to find the routes: QoS based routing
- 5. QoS based forwarding: Buffer Allocation and Drop Policy, Queueing Discipline and Service Policy, Traffic Management of elastic traffic The Ohio State University

ATM vs IP

QoS Component	ATM	IP
Services	CBR, VBR,	Integrated
	ABR, UBR	Services
Signaling	UNI 4.0	RSVP
Policing/Shaping	Leaky bucket	Token bucket
Forwarding	Per-VC/per-class	Differentiated
	queueing	Services
Elastic Traffic	ABR	RED, Slow-start
Mgmt		
Routing	PNNI	QoS routing

Raj Jain

Integrated Services

- Best Effort Service
- Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances. (Min throughput)
- Guaranteed Service: rt-VBR
 - Firm bound on data throughput and <u>delay</u>.
 - Delay jitter or average delay not guaranteed or minimized.
 - Every element along the path must provide delay bound.
 - Is not always implementable, e.g., Shared Ethernet.

TSpec: Token bucket parameters

- □ RSpec (QoS): Allocated Rate (R) and delay slack (S)
 S = Extra acceptable delay over that obtainable with R
 Zero slack ⇒ Reserve exactly R.
- RSpec specified only for guaranteed rate service.
 Not for controlled load service.

RSVP

- □ Resource ReSerVation Protocol
- Internet signaling protocol
- Carries resource reservation requests through the network including traffic specs, QoS specs, network resource availability
- □ Sets up reservations at each hop
- RSVP does not find routes.
 Multicast routing protocols do.

- □ Sources send quasi-periodic PATH messages to multicast address
- □ Path message contain:
 - Sender Template: Data format, Src Address, Src Port
 - Sender TSpec: Traffic Characteristics. Not changed.
 - ADSpec: Network path resource/service availability Accumulated along the path.

The Ohio State University

Raj Jain

- Receivers must join multicast address to receive path messages
- □ Receivers generate reservation (RESV) requests
- □ RESV messages contain resources to be reserved
- RESV messages are forwarded along the reverse path of PATH messages

Reservation (Cont)

- Requests are checked for resource availability (admission control) and administrative permissions (policy control)
- Two or more RESV messages for the same source over the same link are merged.
- Routers maintain a soft state.
 The receivers have to refresh periodically.
- Heterogeneous Receivers: Sources divide traffic into several flows. Each flow is a separate RSVP flow.
 Receivers join one or more flows. Each RSVP flow is homogeneous.

Problems with RSVP and Integrated Services

- Complexity in routers: packet classification, scheduling
- □ Per-Flow State: O(n) ⇒ Not scalable.
 Number of flows in the backbone may be large.
 ⇒ Suitable for small private networks
- Need a concept of "Virtual Paths" or aggregated flow groups for the backbone
- Need policy controls: Who can make reservations? Support for accounting and security.
 - \Rightarrow RSVP admission policy (rap) working group.

Problems (Cont)

- **Receiver Based:**
 - Need sender control/notifications in some cases. Which receiver pays for shared part of the tree?
- Soft State: Need route/path pinning (stability).
 Limit number of changes during a session.
- □ Throughput and delay guarantees require support of lower layers. Shared Ethernet ⇒ IP can't do GS or CLS. Need switched full-duplex LANs.
- □ Can't easily do RSVP on ATM either
- Most of these arguments also apply to integrated services.
 The Ohio State University

Common Open Policy Service Protocol

- When the routers (clients) receive a RSVP message, they send the request the server and obtain authorization
- □ Will work with other (non-RSVP) signaling
- Routers can make local decisions but should keep servers informed
- Servers can send unsolicited responses for changes later

IP ToS Field

Ver	Hdr Len	Precedence	ToS	Unused	Tot Len
4b	4b	3b	4b	1b	16b

- □ IPv4: 3-bit precedence + 4-bit ToS
- RFC791: ToS determines packet treatment and monitory considerations
- □ RFC1349: $bit_1 \Rightarrow min delay, bit_2 \Rightarrow max throughput,$ $bit_3 \Rightarrow max reliability, <math>bit_4 \Rightarrow min cost$
- OSPF and integrated IS-IS can compute paths for each ToS

Differentiated Services Working Group

- □ August 97: BOF started
- □ Feb 98: Working group formed
- Dec 98: Final document
- Email: majordomo@baynetworks.com in body: subscribe diff-serv
- □ Archive: <u>http://www-nrg.ee.lbl.gov/diff-serv-arch/</u>
- Charter: define ds byte (IPv4 ToS or IPv6 traffic class octets)

Diff-Serv Terminology

- □ Service: Offered by the protocol layer
 - Application: Mail, FTP, WWW, Video,...
 - Transport: Delivery, Express Delivery,... Best effort, controlled load, guaranteed service
- Per-Hop Behavior (PHB): Mechanisms Drop threshold, Queue assignment, Service priority, Service Rate
- Flow: Packets with specific header fields, Destination Address, Source Address, Port, Flow Label
- Aggregates: Stream of packets with the same DS byte pattern The Ohio State University Raj Jain

Initial proposals

- Assured service (Jacobson): traffic profile (VBR or CLS like), in-profile and out-profile
- Premium Service (Clark): Peak rate (CBR or GS like),
 Virtual leased line
- □ Two-bit Service: A-bit (CLP) and P-bit (Priority)
- □ 2 Priority bits, 1 drop bit
- □ Bits for delay class: 2 bits ⇒ 4 classes
 Bits for Drop preference: 3 bits ⇒ 8 classes

Latest PHB Allocation

- **□** ppp i 00
- □ ppp = Precedence (Higher is generally better)
- $\Box i = in/out bit \Rightarrow In profile/out Profile$
 - \Rightarrow Drop preference. Allows in/out pkts in same Queue
- Compatible with current usage
- Precedence is used as an index to select a queue, or VC, ...
- □ In IEEE-802 switches, only 1, 2, or 3 msbs used
- $\Box Unrecognized code points \Rightarrow Default forwarding$

PHB Allocation (Cont)

Plan: 32 code points standard, 16 Experimental/local use, 16 reserved xxxx0 Standard xxxx11 Experimental/Local Use xxxx01 Reserved for future

- Hosts may mark DS byte or use RSVP signaling or both or none.
- □ Why hosts? 1. Encryption, 2. Hosts know the importance of info even if the header fields are same
- □ Routers may mark DS byte if necessary.
- Routers at the intserv diff-serv boundary accept/reject
 RSVP requests based on current load

- Service between intserv and diff-serv regions can be statically or dynamically provisioned
- Current integrated services (CLS, GS) may or may not be practical
- □ DS byte may be modified at network boundary

- Standard code points (behaviors)
- □ Receiver control over incoming low-speed link
- □ Signaling: Should users signal or network managers set resource allocations
- Dynamic or Static management controls?
- □ Billing: Bit for receiver billing. If receiver billing, the receiver should be able to deny/drop packets received.
- □ Congestion Check Bit: If set, network indicates highest priority for which packets are being dropped in the ToS byte. The Ohio State University

Raj Jain

QoS Extensions to OSPF

- Open shortest path first
- Separate metric can be specified for each ToS supported
- □ OSPF options field has a T-bit
 T-bit = 1 ⇒ Router can compute routes for each ToS
- □ Work to extend OSPF is currently underway
- QoS ⇒ Frequent updates
 ⇒ Instability: Underloaded links become overloaded Also, complexity
- Ref: Z. Zhang, et al, "QoS Extensions to OSPF," Sep. 97, <u>http://www.internic.net/internet-drafts/draft-zhang-qos-ospf-01.txt</u>

The Ohio State University

Raj Jain

Inter-Domain QoS Routing

- □ Domains want to limit the frequency and amount of information exchanged ⇒ Stability
- QoS based routing may cause frequent changes and instability
- QoS extensions to Border Gateway Protocol (BGP) proposed but may or may not happen
- Need hierarchical aggregation for scalability Crank-back

MPLS

Prefix	Label	Out-Port	Out-Label
164.107.0.0/16	1	2	3
164.107.0.0/24	2	3	4
•••	• • •	• • •	• • •

- Multiprotocol Label Switching
- □ Current: Longest prefix match on the dest address
- □ With Labels: Search can be replaced by indexing
- □ MPLS labels contain 3-bit CoS

- □ Internet protocols suite is being extended to allow QoS
- □ Integrated Services: GS = rtVBR, CLS = nrt-VBR
- Signaling protocol: RSVP
- Differentiated Services will use the DS byte
- QoS Routing: QOSPF

Multiprotocol Label Switching has 3-bit CoS

Raj Jain

References

- For a detailed list of references see: <u>http://www.cis.ohio-state.edu/~jain/</u> <u>refs/ipqs_ref.htm</u>
- P. Ferguson and G. Huston, "Quality of Service: Delivering QoS on the Internet and in Corporate Networks," Wiley 1998.
- RFC 2212, "Specification of Guaranteed Quality of Service", 9/97
- RFC 2211 "Specification of the Controlled-Load Network Element Service", 9/97

References (Cont)

- RFC 2205, "Resource ReSerVation Protocol (RSVP)
 -- Version 1 Functional Specification", 11/97
- "The COPS (Common Open Policy Service) Protocol", 03/16/1998, draft-ietf-rap-cops-01.txt
- "A Framework for Multiprotocol Label Switching", 11/26/1997, draft-ietf-mpls-framework-02.txt
- "MPLS Label Stack Encoding", 02/18/1998, draftietf-mpls-label-encaps-01.txt
- "A Framework for QoS-based Routing in the Internet", 04/09/1998, draft-ietf-qosr-framework-04.txt The Ohio State University

References (Cont)

- Diff-Serv Mail Thread index, <u>http://www-nrg.ee.lbl.gov/diff-serv-arch/</u>
- "Definition of Differentiated Services Field (DS Byte) in the IPv4 and IPv6 Headers," 5/1998, draft-ietfdiffserv-header-00.txt
- "Differentiated Services Operational Model and Definitions", 02/11/1998, draft-nichols-dsopdef-00.txt
- "IP Precedence in Differentiated Services Using the Assured Service", 04/10/1998, draft-ietf-diffservprecedence-00.txt

References (Cont)

 "A Framework for End-to-End QoS Combining RSVP/IntServ and Differentiated Services", 03/16/1998, draft-bernet-intdiff-00.txt

IETF Working Groups

- □ Internet Fax (fax)
- □ IP Telephony (iptel)
- □ Audio/Video Transport (avt)
- □ MBONE deployment working group (mboned)
- □ Multiparty Multimedia Session Control (mmusic)
- □ Multicast Extensions to OSPF (mospf)
- Inter-Domain Multicast Routing (idmr)
- □ Large Scale Multicast Applications (lsma)
- □ Integrated Services (intserv)
- □ Integrated Services over Specific Link Layers (issll)
- □ Resource Reservation Setup Protocol (rsvp)
- QoS-based Routing (qosr)

Differentiated services (diff-serv)

Raj Jain

List of Acronyms

ABR	Available Bit Rate
-----	--------------------

- ATM Asynchronous Transfer Mode
- BA Behavior Aggregate
- BGP Border Gateway Protocol
- BOF Birds of a Feather
- CBR Constant Bit Rate
- CDV Cell Delay Variation
- CFI Canonical Format Indicator
- CLP Cell Loss Priority
- CLS Controlled Load Service
- COPS Common Open Policy Service Protocol

- DA Destination Address
- DQDB Distributed Queue Dual Bus
- DSBM Designated Subnet Bandwidth Manager
- DVMRPDistance Vector Routing Multicast Protocol
- FCS Frame Check Sequence
- FDDI Fiber Distributed Data Interface
- FIFO First in First out
- FTP File Transfer Protocol
- GS Guaranteed Service
- ICMP Internet Control Message Protocol

- IEEE Institution of Electrical and Electronic Engineers
- IETF Internet Engineering Task Force
- IGMP Internet Group Management Protocol
- IP Internet Protocol
- IPv4 Internet Protocol Version 4
- IPv6 Internet Protocol Version 6
- IS Internal System
- IntServ Integrated Services
- LANs Local Area Networks
- LLC Logical Link Control
- LU Local Use

- MAC Media Access Control
- MBONE Multicast Backbone
- MBS Maximum Burst Size
- MF Multi-field
- MPLS Multiprotocol Label Switching
- MTU Maximum Transmission Unit
- NHRP Next Hop Resolution Protocol
- OOPS Open Outsourcing Policy Service
- OSPF Open Shortest Path First
- PASTE Provider Architecture for Differentiated Services and Traffic Engineering

PHB Per-Hop Behavior

PIM Protocol Independent Multicast

- PT Protocol Type
- QOSPF QoS-OSPF
- QoS Quality of Service
- RED Random Early Discard
- ResV Reservation Request
- RFC Request for Comment
- RIF Routing Information Field
- RSVP Resource Reservation Protocol

RSpec	QoS Specification
RTP	Real-time Transport Protocol
SBM	Subnet Bandwidth Manager
SONET	Synchronous Optical Network
ТСР	Transmission Control Protocol
TPID	Tag Protocol ID
TR	Token Ring
TSpec	Traffic Specification
ToS	Type of Service
UBR	Unspecified Bit Rate
UDP	User Datagram Protocol

- UNI User-Network Interface
- VBR Variable Bit Rate
- VC Virtual Circuit
- VLAN Virtual Local Area Network
- WAN Wide Area Network
- WFQ Weighted Fair Queueing