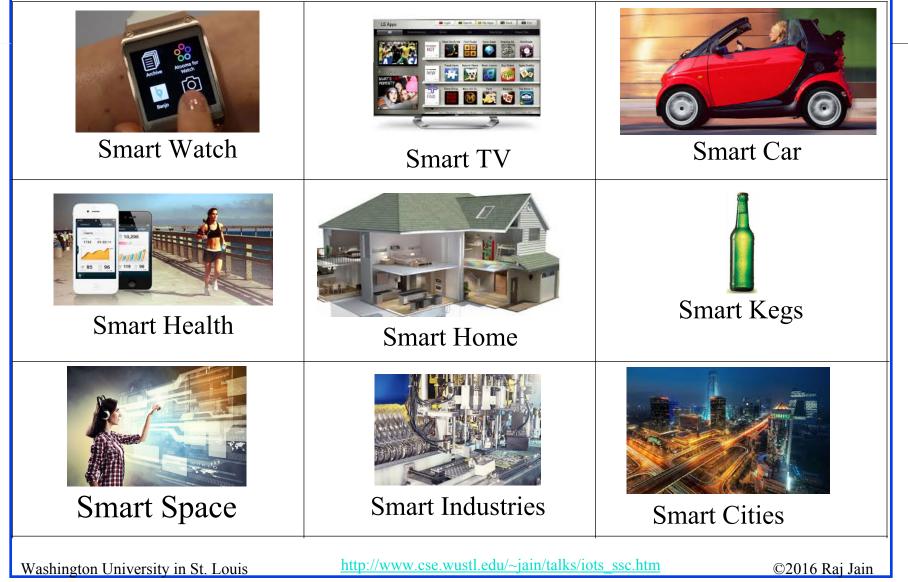
Internet of Things and Smart Cities: Challenges and Issues

Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Keynote at 2nd IEEE International Workshop on Sensors and Smart Cities

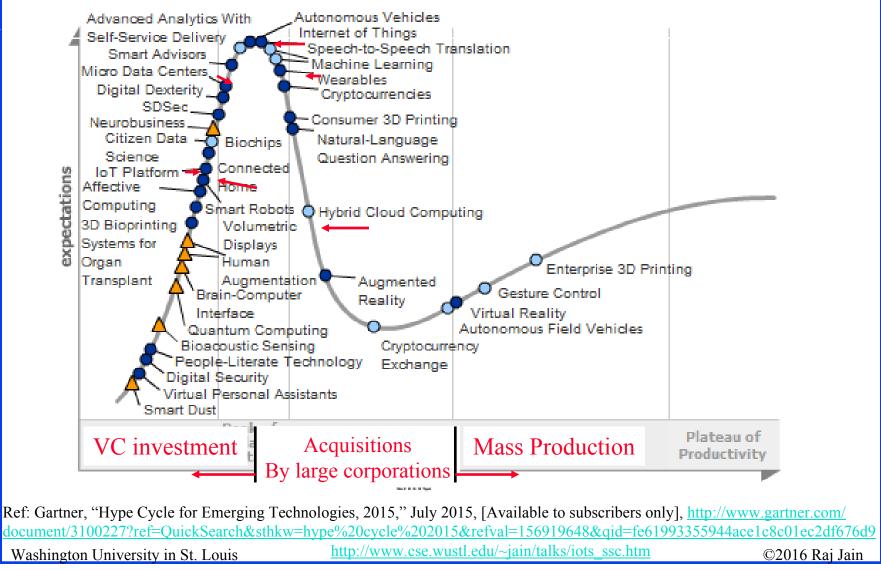
(SSC2016), St. Louis, MO, May 18, 2016


These slides are available on-line at:

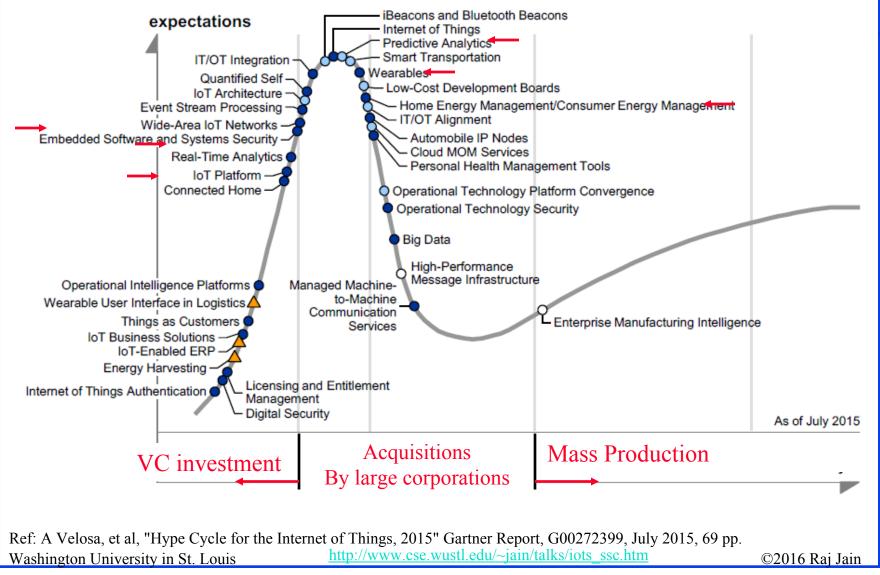
http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

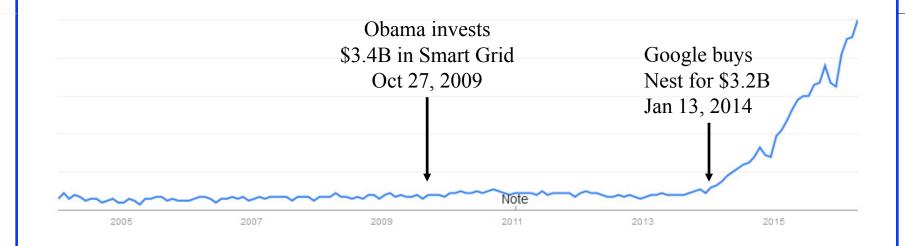
- 1. A Layered Model of IoT and Smart Cities
- 2. City IQ: How to measure smartness of a city
- 3. Challenges: Non-Technical and Technical
- 4. IoT/Smart City Security
- 5. Software Defined Secure Multi-Cloud Application Management for IoT

Trend: Smart Everything



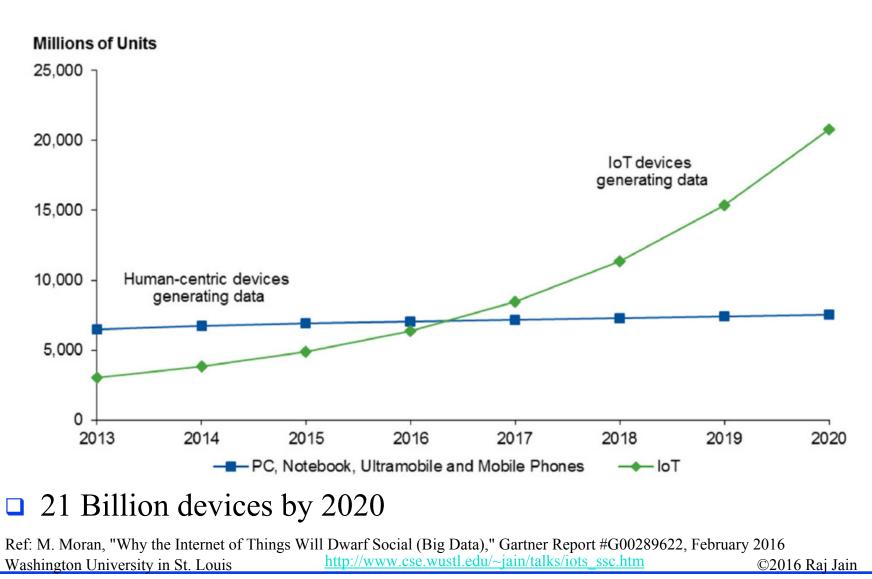
What's Smart?


- □ Old: Smart = Can think \Rightarrow Computation = Can Recall \Rightarrow Storage
- Now: Smart = Can find quickly, Can Delegate
 ⇒ Communicate = Networking
- Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...


Gartner Hype Cycle 2015

Gartner's Hype Cycle For IoT 2015

Google Trends



- □ Around for 10 years
- IERC-European Research Cluster on the Internet of Things funded under 7th Framework in 2009
 - \Rightarrow "Internet of European Things"
- US interest started in 2009 w \$3.4B funding for smart grid in American Recovery and Reinvestment Act of 2009

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Computing vs. IoT

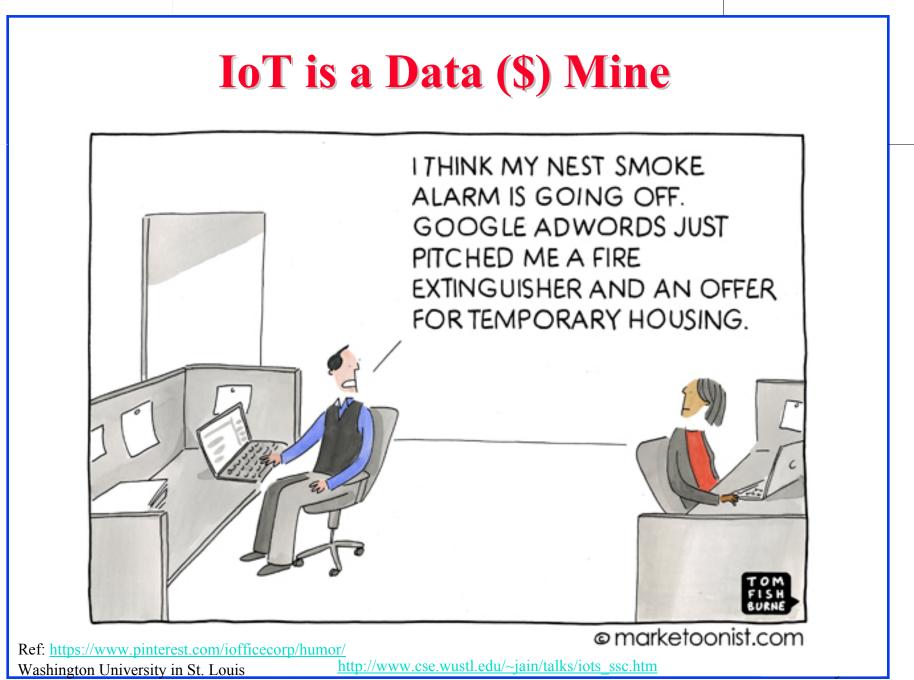
IoT Business Opportunity

- **1**.7 Trillion by 2020 IDC
- □ \$7.1 Trillion Gartner
- \$10-15 Trillion just for Industrial Internet GE
 \$19 Trillion Internet of Everything Cisco

Ref: http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/

http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/ Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u> ©2016 Raj Jain

A 7-Layer Model of IoT


	Services	Energy, Entertainment, Health, Education, Transportation,		
	Apps and SW	SDN, SOA, Collaboration, Apps, Clouds		
	Analytics	Machine learning, predictive analytics, Data mining,	ity	
ICI	Integration	Sensor data, Economic, Population, GIS,	Security	Management
	Interconnection	DECT/ULE, WiFi, Bluetooth, ZigBee, NFC,		Mana
	Acquisition	Sensors, Cameras, GPS, Meters, Smart phones,		
ľ	Market	Smart Grid, Connected home, Smart Health, Smart Cities,		
	Washington University in	St. Louis <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u>	©201	6 Raj Jain

Areas of Research for IoT

- 1. **PHY**: Smart devices, sensors giving real-time information, *Energy Harvesting*
- 2. **Datalink**: WiFi, Bluetooth, ZigBee, 802.11ah, ... Broadband: DSL, FTTH, Wi-Fi, 5G, ...
- 3. **Routing**: *Multiple interfaces*, Mesh networking, ...
- 4. Analytics: Big-data, data mining, Machine learning, Predictive analytics, ...
- 5. Apps & SW: SDN, SOA, Cloud computing, Web-based collaboration, Social networking, HCI, Event stream processing, ...
- 6. **Applications**: Remote health, On-line education, on-line laboratories, ...
- 7. Security: Privacy, Trust, Identity, Anonymity, ...

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

A 7-Layer Model of Smart Cities

	Services		Energy, Entertainment, Health, Education, Transportation, w	ater,	
	Apps and SW		SDN, SOA, Collaboration, Apps, Clouds		
	Analytics		Machine learning, predictive analytics, Data mining,	ity	
ICI	Integration		Sensor data, Economic, Population, GIS,	Security	Management
	Interconnection		DECT/ULE, WiFi, Bluetooth, ZigBee, NFC,		Mana
	Acquisition		Sensors, Cameras, GPS, Meters, Smart phones,		
	Infrastructure		Roads, Trains, Buses, Buildings, Parks,		
	Washington University in	<u>1 St.</u>	Louis <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u>	©2016	6 Raj Jain

What's the Problem?

- \Box City = 100,000+ population
- Over 50% of world population lives in cities and growing. By 2050, 75% will live in urban areas
- \Box Mega city = 10+ million population
 - > 11 in Asia, 4 in Latin America, 2 in Africa, 2 in Europe, 2 in North America = 21 Total in 2010
 - > 29-37 in 2025 with 14-22 in Asia
- □ City population is growing much faster than resources
 ⇒ Need sustainable ways to manage resources for city living:
 Water, Electricity, Housing,...⇒ Quality of life ⇒ Smart City

 Ref: V. Aillaud, "Digital economy and smart métropolies : a joint future?," http://www.europmetrocci.eu/l/Portals/0/

 EuropmetrocciDocuments/london%2030-31%20october%202013/PARIS%20Smart-cities%20Valerie%20AILLAUD.ppt

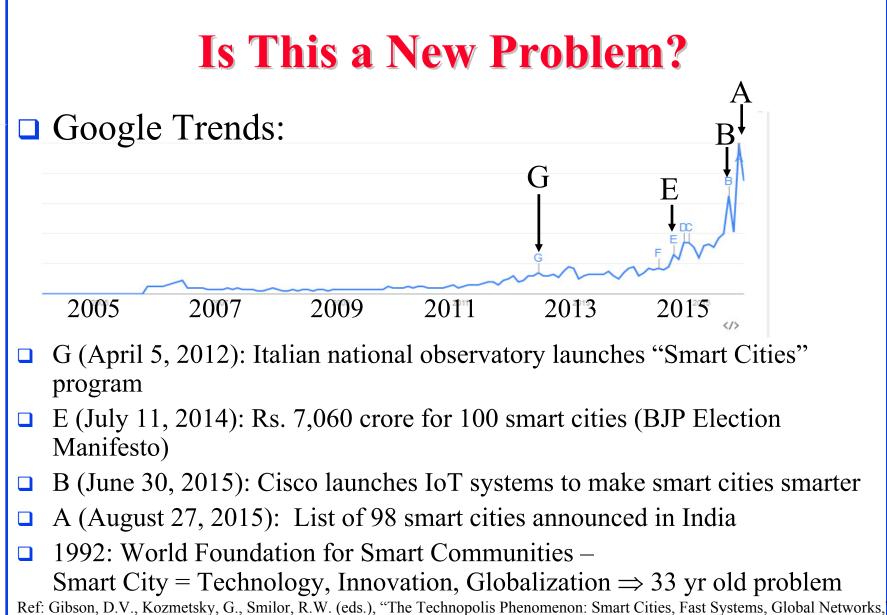
 J. Bélissent, "Getting Clever About Smart Cities: New Opportunities Require New Business Models," Forester, Nov 2010, 33 pp.,

 http://193.40.244.77/iot/wp-content/uploads/2014/02/getting_clever_about_smart_cities_new_opportunities.pdf

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm
 (C2016 Raj Jain

Old vs. New

- Governments: Last to adopt new technologies
- Amazon, Face book, Google: Use the latest technologies Internet, smart phones, tablets, RFID, sensors, social media
- Smart ⇒ Run a city like Amazon.com User driven, Dynamic, Real-time, Technology-oriented


Numerous offices

Single interface for all services

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Rowman & Littlefield, New York (1992)

Washington University in St. Louis

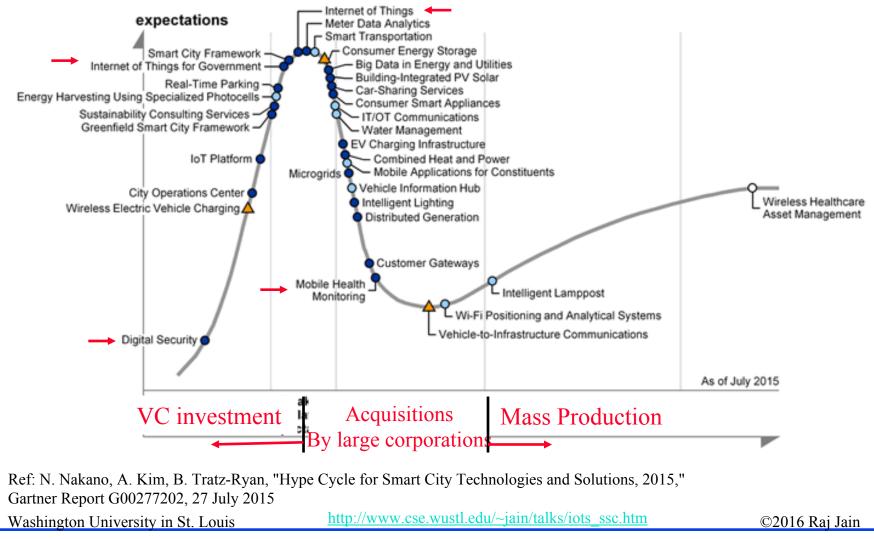
http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

- \$27.5 billion annual revenue in smart city technology by 2023
 \$174 billion investment by 2023
- Cisco, Intel, Huawei, IBM, Fujitsu, SIEMENS are all selling ICT for smart cities
- India government will spend ~\$7 billion for smart cities in the next five years

 Ref: Navigant Research, "Smart Cities," http://www.navigantresearch.com/research/smart-cities

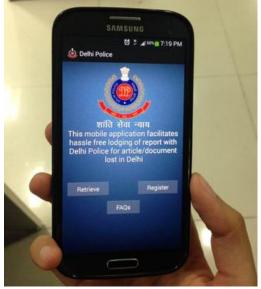
 Washington University in St. Louis
 http://www.navigantresearch.com/research/smart-cities

Smart Cities Research in US


- White House "Smart Cities Week" (Sep 15-18, 2015, Next: Sep 27-29, 2016)
- □ \$40 M Research funding from NSF
 - Gigabit applications healthcare, energy, transportation, manufacturing, education and learning, and public safety.
 - Cyber physical systems
- □ Make Broadband construction faster:
 - > Websites to list all federal assets available for broadband
 - Broadband installation during new road construction
- □ US Ignite Program: Multi-gigabit Applications \Rightarrow Uncompressed video

Ref: NSF, "Cultivating Smart and Connected Communities," <u>http://nsf.gov/news/news_summ.jsp?cntn_id=136253</u> Smart City Week, <u>http://www.smartcitiesweek.com/</u>

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Hype Cycle for Smart Cities

Smart Services: Examples

- London's Datastore: Jobs, Waste, Crime, Visitors, ... All open to public, <u>http://data.london.gov.uk/</u>
- New Songdo City, Incheon, South Korea: All city services available via Internet, video conferencing, <u>http://www.songdo.com/</u>
- Delhi police app to report crime 55,000 reports in 6 months
- In Melbourne, All trees have been assigned ID numbers so that public can report tree problems, overgrown branches, fallen trees, etc.

City IQ: Benchmark for Smartness

- ISO 37120:2014 Sustainable Development of Communities: Indicators for City Services and Quality of Life
- Using 17 themes and 100 indicators for city services and quality of life, World Council of City Data (WCCD) give a city one of five levels.

List of Smart Cities

□ World Council on City Data (WCCD): Partial List

City	Country	Year	Level
Amsterdam	Netherlands	2014	Aspirational
Helsinki	Finland	2014	Aspirational
Johannesburg	South Africa	2014	Aspirational
Shanghai	China	2014	Aspirational
Buenos Aires	Argentina	2014	Gold
Makkah	Saudi Arabia	2014	Gold
Melbourne	Australia	2014	Gold
Barcelona	Spain	2014	Platinum
Boston	United States of America	2014	Platinum
Dubai	United Arab Emirates	2014	Platinum
London	United Kingdom	2014	Platinum
Rotterdam	Netherlands	2014	Platinum
Toronto	Canada	2014	Platinum
Los Angeles	United States of America	2015	Platinum

Ref: <u>http://www.dataforcities.org/registry</u> Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Areas Measured by ISO 37120:2014

- 1. Economy
- 2. Education
- 3. Energy
- 4. Environment
- 5. Finance
- 6. Fire and emergency response
- 7. Governance
- 8. Health
- 9. Recreation

Washington University in St. Louis

10. Safety

- 11. Shelter
- 12. Solid waste
- 13. Telecommunications and innovation
- 14. Transportation
- 15. Urban planning
- 16. Wastewater
- 17. Water and sanitation

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Indicators
 Indicators: Quantitative, qualitative, or descriptive measures 47 of 100 are core.
Core (Required), Supporting (Recommended), Profile (Informative) indicators
Example: Education
1. % of female school aged population enrolled in schools (core)
2. % of students completing primary education: survival rate (core)
 % of students completing secondary education: survival rate (core)
4. Primary education student/teacher ratio (core)
 5. % of male school-aged population enrolled in schools (supporting)
6. % of school-aged population enrolled in schools (supporting)
 # of higher education degrees per 100,000 population (supporting)
Ref: ANSI, "ISO 37120-2014 Preview Final V2, <u>http://publicaa.ansi.org/sites/apdl/ANSI%20Network%20on%20Smart%20and%20</u> Sustainable%20Cities/ISO+37120-2014_preview_final_v2.pdf

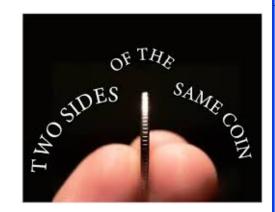
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Challenges

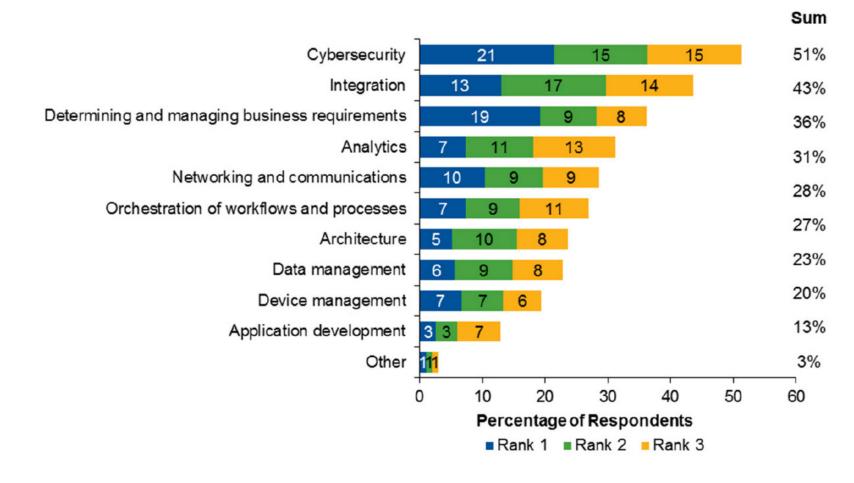
- Financing: Self-sustaining ⇒ Revenue generating. Federal or state financing is just "seed" funding Private Partnerships ⇒ Revenue sharing or bartering
- 2. Ensuring **fairness** to all localities of a city \Rightarrow Private companies want the best revenue generating areas
- 3. **Public Trust**: in government, the data, and expect actions Lack of transparency \Rightarrow Waste of money on technologies
- 4. **Customization**: Every city is different. Private companies want to reuse their "one solution for all"
- 5. Turnover: Technology gets outdated every year or two
- 6. Digital **Disruption**
- 7. Security and Privacy

J. Bélissent, "Getting Clever About Smart Cities: New Opportunities Require New Business Models," Forester, Nov 2010, 33 pp., <u>http://193.40.244.77/iot/wp-content/uploads/2014/02/getting_clever_about_smart_cities_new_opportunities.pdf</u> Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u> ©2016 Raj Jain



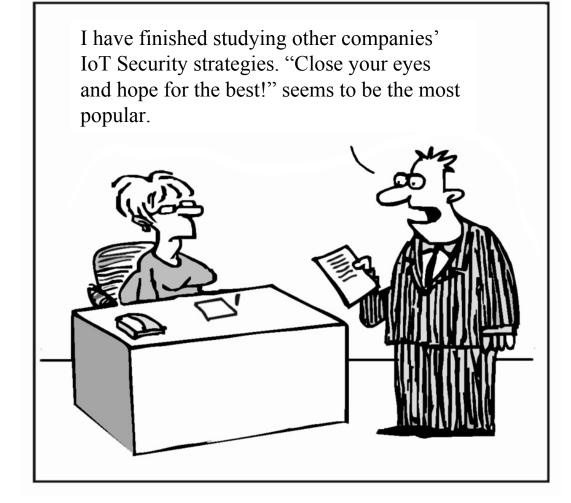
Digital Disruptions

- ❑ New methods ⇒ Improvements
 ⇒ Disruption to old methods
- ❑ Automation ⇒ Better efficiency
 ⇒ What to do with those replaced
- □ Privatization, Automation, Change ⇒ Strikes



Washington University in St. Louis

Top Inhibitors to the Adoption of the IoT



Ref: B. Lheurex, et al, "Survey Analysis: Users Cite Ambitious Growth and formidable Technical Challenges in IoT Adoption," Gartner Report #G00300127, March 2016,

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

IoT Security: Popular Approach

 Ref: http://cloudtweaks.com/2011/08/the-lighter-side-of-the-cloud-the-migration-strategy/

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Current IoT Security

- □ HP Study
 - ➢ 80% had privacy concerns
 - ➤ 70% lacked encryption
 - ➢ 60% had insecure updates
- □ Symantec Study:
 - > 1/5th of Apps did not use SSL (Secure transfers)
 - None of the devices provided mutual (gateway) authentication
 - > No lock-out/delaying measures against repeated attacks
 - Common web application vulnerabilities
 - Firmware upgrades were not encrypted

Ref: <u>http://fortifyprotect.com/HP_loT_Research_Study.pdf</u>

Ref: M. Barcena and C. Wueest, "Insecurity in the Internet of Things," Symantec, March 2015,
Washington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Internet of Harmful Things

Imagine, as researchers did recently at Black Hat, someone hacking your connected toilet, making it flush incessantly and closing the lid repeatedly and unexpectedly.

 Ref: http://www.computerworld.com/article/2486502/

 security0/worm-may-create-an-internet-of-harmful-things--says-symantec--take-note--amazon-.html

 Washington University in St. Louis

 http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Security *≠***AES-128**

- CIA = Confidentiality, Integrity, Availability
 = Encryption + Message Authentication Code + Denial of Service Prevention
- □ Use of AES-128 does not guarantee security.

□ Insecurity:

- > How strong is the key?
- > Where the key is stored?
- > Bugs in system code
- > Backdoors

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

DEFCON 2015

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

DEFCON 2015 (Cont)

DefCon 23:

Hacking a Linux Rifle

- □ Hacking a Linux rifle
- Hacking smart safes
- Wirelessly steal cars
- Hack a Tesla
- □ Hack ZigBee
- Hacking IoT baby monitors
- Hacking FitBit Aria
- Cracking crypto currency
- □ Hack out of home detention
- □ Insteon's false security
- □ Hacking RFID, NFC
- □ DARPA Cyber Grand Challenge \$2M

 Ref: https://www.ethicalhacker.net/features/opinions/first-timers-experience-black-hat-defcon

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Door Locks Insecurity

Onity Door Locks:

- > Used on hotel doors with magnetic strips
- > Information is encrypted using a hotel-specific secret key
- Programming port on the bottom
- Security Key can be read through programming port
- > Firmware update not possible \Rightarrow Replace hardware
- □ Sigma Design's Z-Wave Door Locks:
 - Z-Force tool can monitor traffic and have the lock accept a an arbitrary encryption key

Kwikset Kevo Door Locks:

- Password can be reset by email
- > Hijacked email addresses and phishing attack

Ref: N. Dhanjani, "Abusing the Internet of Things: Blackouts, Freakouts, and Stakeouts," O'Reilly, 2015, ISBN: 978-1-491-90233-2Washington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/iots_ssc.htm©2016 Raj Jain

NEST Insecurity

- Log files with usage statistics are stored locally and uploaded to cloud when connected to Internet
- □ User network credentials are stored in the device in plain text
- Can be booted from its USB port, if boot configuration pin on the board sys_boot[5] is high
- □ Your heating personnel have full control over the house
 - > Away detection
 - Remote control
 - > Network credentials => Control other NEST devices
- Attack: Press the reset button for 10 seconds causing sys_boot[5] to high, inject code through USB
- □ This must have changed since August 2014

 Ref: G. Hernandez, et al, "Smart Nest Thermostat A Smart Spy in Your Home," Black hat USA 2014, 43 slides,

 <u>https://www.blackhat.com/docs/us-14/materials/us-14-Jin-Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home.pdf</u>

 Washington University in St. Louis
 <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u>

Attack Surface

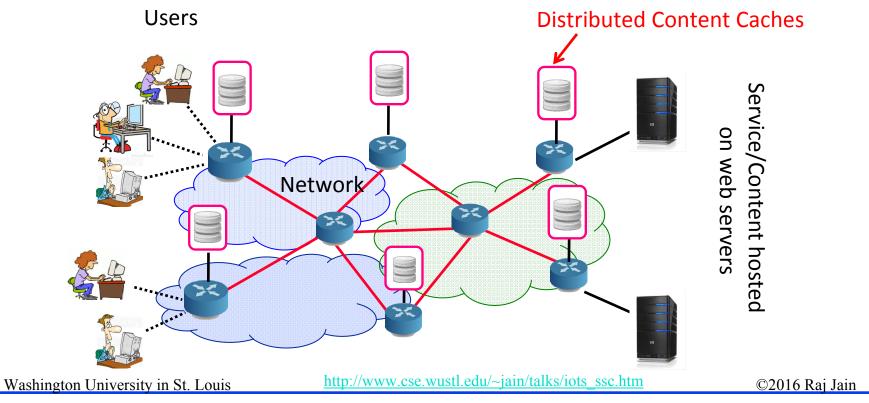
- 1. **IoT Devices**
- 2. IoT wireless access technology: DECT, WiFi, Z-wave, ...
- 3. IoT Gateway: Smart Phone
- 4. Home LAN: WiFi, Ethernet, Powerline, ...
- 5. **IP Network**: DNS, Routers, ...
- 6. Higher-layer Protocols
- 7. Cloud
- 8. Management Platform: Web interface
- 9. Life Cycle Management: Booting, Pairing, Updating, ...

Smart City Insecurity

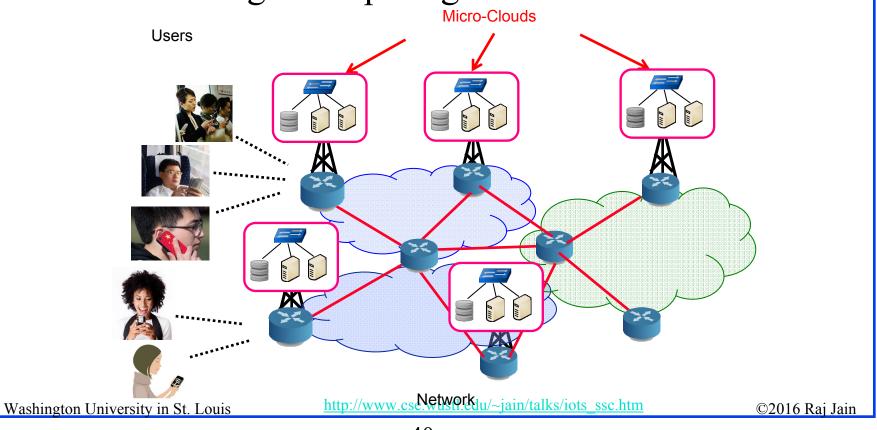
- Smart Court House: Placer county courthouse accidently summoned 1200 people to jury duty on a morning in May 2012 causing traffic jams
- Smart Metro: Bay Area Rapid Transit (BART) was shut down by a technical problem affecting 500 to 1000 passengers on 19 trains (November 2013)
- Smart Electricity: 55 Million people in Northeast USA lost electric power due to a software bug
- Not marking a pipeline on the map lead to a gas pipe line explosion and fire in Johnson County, Texas by workers installing electrical lines
- ❑ Nation states and cyber terrorists know how to make use of public data ⇒ Smart Wars

 Ref: C. Cerrudo, "Hacking smart cities," RSA Conference 2015,

 <u>http://www.rsaconference.com/writable/presentations/file_upload/hta-t10-hacking-smart-cities_final.pdf</u>


 Washington University in St. Louis

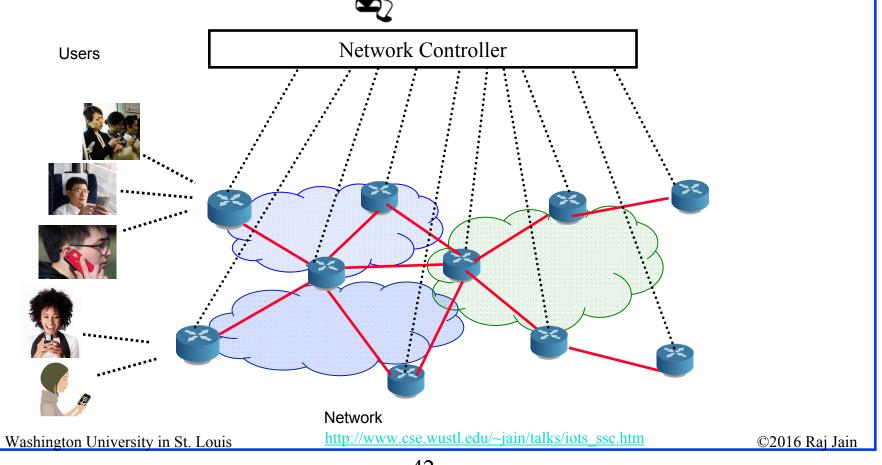
 <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u>


Past: Data in the Edge

To serve world-wide users, latency was critical and so the data was replicated and brought to edge

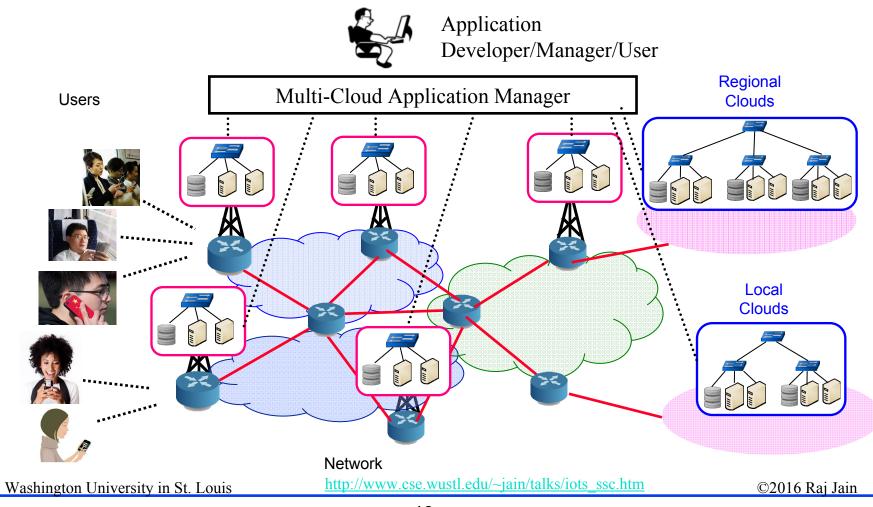
Trend: Computation in the Edge

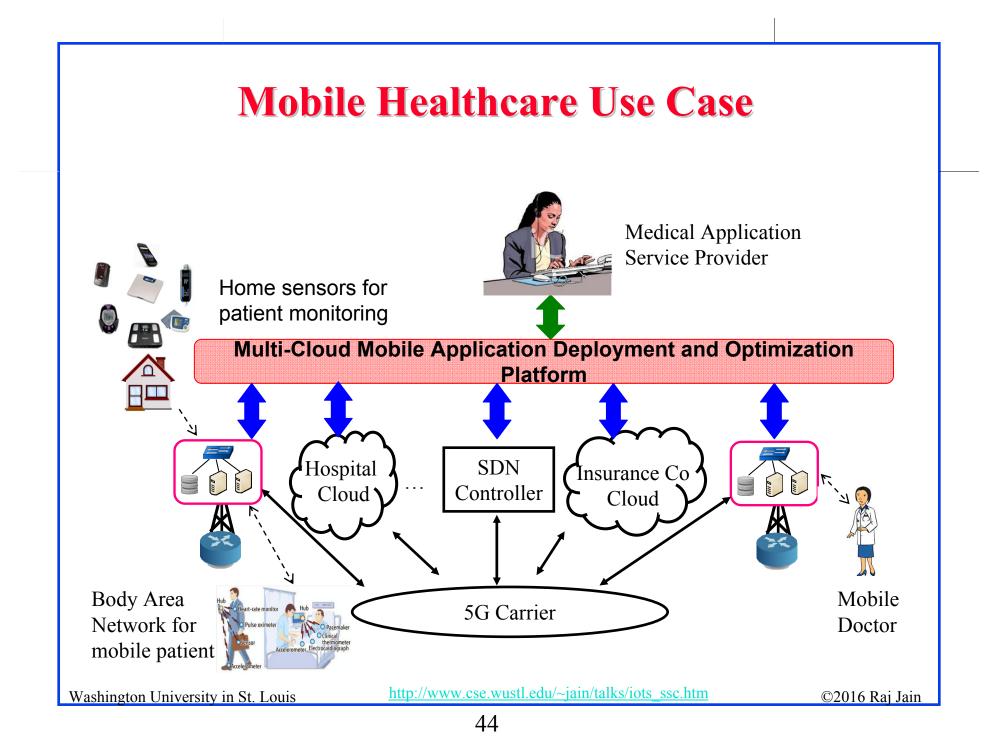
To service mobile users/IoT, the computation needs to come to edge
 Micro-cloud on the tower
 Mobile-Edge Computing



Trend: Multi-Cloud □ Larger and infrequent jobs serviced by local and regional clouds \Rightarrow Fog Computing **Micro-Clouds** Regional Users Clouds Local Clouds Network http://www.cse.wustl.edu/~jain/talks/iots ssc.htm Washington University in St. Louis ©2016 Raj Jain

Past: Software Defined Networking


Network can be managed w/o worrying about individual device hardware


 Image: Network Manager

Trend: Software Defined Multi-Cloud Application Delivery

Cloud MOM (message oriented middleware)

Summary

- Smart ≠ High-Speed Computation, Smart ≠ Big Data Storage, Smart = Networked
- 2. IoT/Smart Cities research areas are easy via the 7-layer model They have brought in research issues in every layer: Sensors, datalink, routing, applications, analytics.
- 3. Numerous challenges: Sustainable partnerships, Digital disruption, fast technology turnover, trust. Security and privacy are most important issues
- 4. Computation is moving to the Edge ⇒ Fog Computing ⇒ Multi-Cloud/Inter-Cloud
- 5. Our MCAD abstracts/virtualizes the cloud interfaces and allows automated management of security and other policies of multi-cloud applications

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Recent Talks on IoT/Smart Cities

- Raj Jain, "Internet of Things: Research Issues," NSF Applications and Services Workshop, January 27, 2016, <u>http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm</u>
- Raj Jain, "Internet of Things: Research Challenges and Issues," Keynote at the Internet of Things World Forum, Research and Innovation Symposium, Dubai, December 5-6, 2015, <u>http://www.cse.wustl.edu/~jain/talks/iotwrld.htm</u>
- Raj Jain, "Internet of Things Security," Keynote at STLCybercon 2015, University of Missouri, St. Louis, November 20, 2015, <u>http://www.cse.wustl.edu/~jain/talks/iots_um.htm</u>
- Raj Jain, "Smart Cities: Technological Challenges and Issues," IEEE CS Keynote at 21st Annual International Conference on Advanced Computing and Communications (ADCOM) 2015, Chennai, India, September 19, 2015, Chennai, India, September 18, 2015, <u>http://www.cse.wustl.edu/~jain/talks/smrtcit.htm</u>
- Raj Jain, "Internet of Things: Challenges and Issues," IEEE CS Keynote at 20th Annual Conference on Advanced Computing and Communications (ADCOM 2014), Bangaluru, India, September 19, 2014, <u>http://www.cse.wustl.edu/~jain/talks/iot_ad14.htm</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

Recent Papers on Multi-Cloud

- Subharthi Paul, Raj Jain, Mohammed Samaka, Jianli Pan, "Application Delivery in Multi-Cloud Environments using Software Defined Networking," Computer Networks Special Issue on cloud networking and communications, Available online 22 Feb 2014, <u>http://www.cse.wustl.edu/~jain/papers/comnet14.htm</u>
- Raj Jain and Subharthi Paul, "Network Virtualization and Software Defined Networking for Cloud Computing - A Survey," IEEE Communications Magazine, Nov 2013, pp. 24-31, http://www.cse.wustl.edu/~jain/papers/net_virt.htm
- Subharthi Paul, Raj Jain, Mohammed Samaka, Aiman Erbaud, "Service Chaining for NFV and Delivery of other Applications in a Global Multi-Cloud Environment," ADCOM 2015, Chennai, India, September 19, 2015, <u>http://www.cse.wustl.edu/~jain/papers/adn_in15.htm</u>
- Deval Bhamare, Raj Jain, Mohammed Samaka, Gabor Vaszkun, Aiman Erbad, "Multi-Cloud Distribution of Virtual Functions and Dynamic Service Deployment: OpenADN Perspective," Proceedings of 2nd IEEE International Workshop on Software Defined Systems (SDS 2015), Tempe, AZ, March 9-13, 2015, 6 pp.

<u>http://www.cse.wustl.edu/~jain/papers/vm_dist.htm</u> Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u>

Acronyms

- Fourth Generation **4**G
- 5GFift Generation
- 6TiSCH IPv6 over Time Slotted Channel Hopping Mode of IEEE 802.15.4e
- ADCOM Advanced Computing and Communications
- **AES-128** Advanced Encryption Standard
- Advanced Message Queuing Protocol AMQP
- American National Standards Institute ANSI
- ANT A proprietary open access multicast wireless sensor network
- Interoperability Function added to ANT ANT+
- **British Standard** BS
- BSI **British Standards Institute**
- CARP **Channel-Aware Routing Protocol**
- **Committee Draft** CD
- European Committee for Standardization CEN
- CENELEC European Committee for Electro technical Standardization Coordination Group CG

Washington University in St. Louis

- □ CIA Confidentiality, Integrity, Availability
- CoAP Constrained Application Protocol
- CoRE Constrained RESTful Environment
- □ CORPL Cognitive RPL
- □ CS Computer Society (IEEE)
- **DARPA** Defense Advance Research Project Agency
- DASH-7 Named after last two characters in ISO 18000-7
- DDS Data Distribution Service
- DECT Digital Enhanced Cordless Telephone
- DECT/ULE Digital Enhanced Cordless Telephone with Ultra Low Energy
- DEFCON d-e-f conference (named after alphabets d, e, f)
- DIN Deutsches Institut f
 ür Normung (German Institute for Standardization)
- DISDraft International Standard
- DNS Domain Name System
- DSL Digital Subscriber Line

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

- DTLS Datagram Transport Layer Security
- DTS Draft Technical Specification
- □ ECC Error Correcting Code
- EDSA Embedded Device Security Assurance
- ETSI European Telecommunications Union
- □ FG-SSC Focus group on smart sustainable cities
- **FTTH** Fiber to the home
- □ FTTx Fiber to the X
- GB Gigabyte
- **GDP** Gross Domestic Production
- General Electric
- **GIS** Geographical Information Systems
- GP Green PHY
- **GPS** Global Positioning System
- □ HCI Human Computer Interface
- □ HMAC Keyed-Hash Message Authentication Code

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

HP Hewlett Packard HTTP Hyper Text Transfer Protocol ICS Industrial Control Systems Information and Communications Technology ICT ID Identification IDC International Data Corporation IDs Identifiers IEC International Engineering Council **IEC Systems Evaluation Group** IEC/SEG Institution of Electrical and Electronic Engineers IEEE Internet Engineering Task Force IETF **Industry Foundation Classes** IFC IMS IP Multimedia System Internet of Things IoT **Internet Protocols** IP Intelegence Quotient IO

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

- □ IRTF Internet Research Task Force
- Image: ISAInternational Society of Automation
- □ ISBN International Standard Book Number
- ISO International Standards Organization
- □ IT Information Technology
- ITU-T International Telecommunications Union -Telecommunication Standardization Sector
- □ JTC Joint Technical Committee
- □ KPI Key Performance Indicator
- □ LAN Local Area Network
- □ LoRaWAN Long Range Wide Area Network
- LowPAN Low Power Personal Area Network
- □ LTE Long-Term Evolution
- MCAD Multi-Cloud Application Delivery
- □ MHz Mega Hertz
- MO Missouri

 MOM
 Message
 Oriented
 Middleware

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

- MQTT Message Queue Telemetry Transport
- NFC Near Field Communication
- NIST National Institute of Technology
- □ NSF National Science Foundation
- OAuth Open Protocol of Secure Authorization
- OpenADN Open Application Delivery Networking
- OS Operating System
- PAS Publicly Available Specification
- PD Published Document
- PHY Physical Layer
- PKI Public Key Infrastructure
- **RFC** Request for Comment
- **RFID** Radio Frequency Identifier
- □ RoW Rest of the World
- **RPL** Routing Protocol for Low Power and Lossy Networks
- **RSA** Rivest, Shamir, and Adleman

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm

- □ RTS Road traffic safety
- SASL Simple Authentication and Security Layer
- □ SC Smart community
- SDLA Requirements for Security Development Lifecycle Assurance
- □ SDN Software Defined Networking
- SDS Software Defined Systems
- SEG System Evaluation Group
- □ SG5 Study Group 5
- SMACK Simple Mandatory Access Control Kernel for Linux
- SOA Service oriented Architecture
- SSA Software Security Assurance
- □ SSC Smart and Sustainable Cities and
- SSCC-CG Smart and Sustainable Cities and Communities Coordination Group
- **SSL** Secure Session Layer
- **SW** Software

TC Technical Committee Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u>

- **TCG** Trusted Computing Group
- **TCP** Transmission Control Protocol
- **TLS** Transport Level Security
- **TMB** Technical Management Board
- □ TNC Trusted Network Connect
- **TPM** Trusted Platform Module
- **TR** Technical Report
- **TS** Technical Specification
- □ TV Television
- UDPUser Datagram Protocol
- □ ULE Ultra Low Energy
- □ US United States
- **USA** United States of America
- □ VC Virtual Circuit
- VDE Association for Electrical, Electronic & Information Technologies

VM Virtual Machine Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/iots_ssc.htm</u>

- WANWide Area Network
- WCCDWorld Council on City Data
- □ WG Working Group
- □ WiFi Wireless Fidelity
- WiMAX Worldwide Interoperability of Microwave Access
- WirelessHART Wireless Highway Addressable Remote Transducer Protocol

