

- 1. What is Internet 3.0?
- 2. Why should you keep on the top of Internet 3.0?
- 3. What are we missing in the current Internet?
- 4. Our Proposed Architecture for Internet 3.0: GINA

 Washington

 Iniversity in St Louis

What is Internet 3.0?

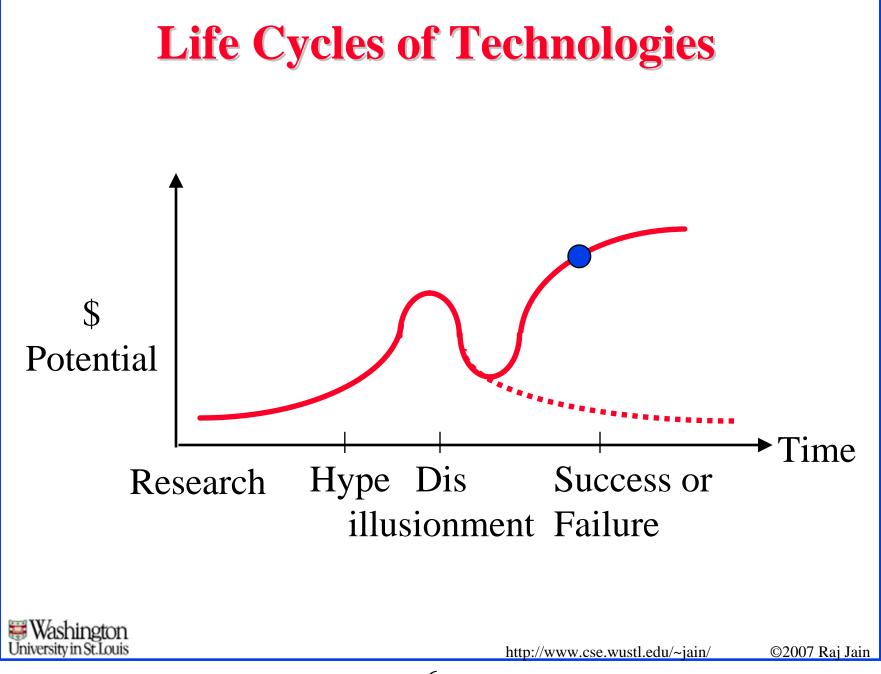
- □ Internet 3.0 is the next generation of Internet
- □ Named by me along the lines of "Web 2.0"
- Also known as "Global Environment for Networking Innovations" or GENI (Internet 3.0 is more intuitive then GENI)
- National Science Foundation is planning a \$300M+ research and infrastructure program on GENI
 Most of the networking researchers will be working on GENI for the coming years
- □ Ref: <u>http://www.nsf.gov/cise/geni/</u>

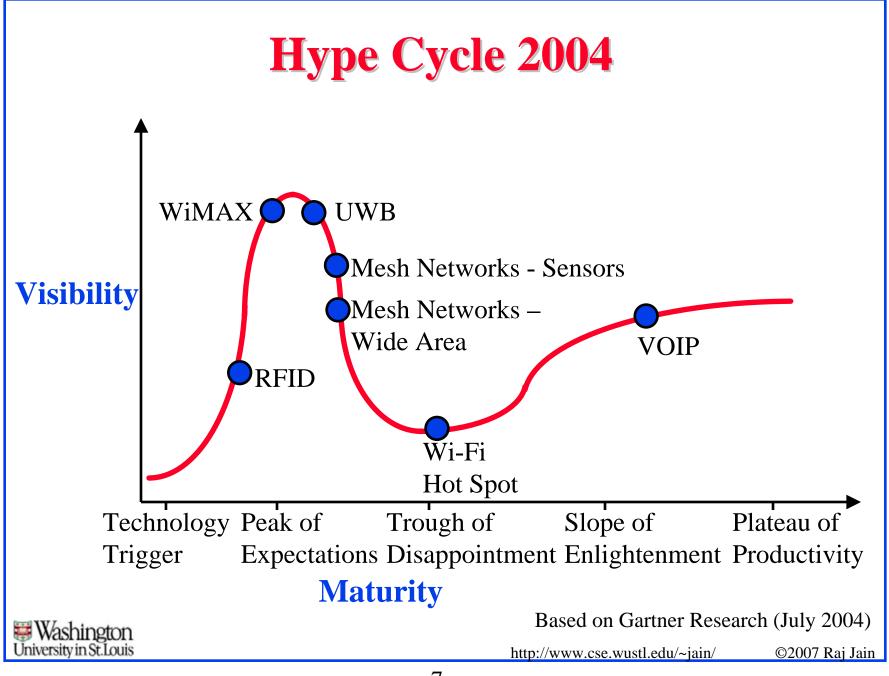
Washington

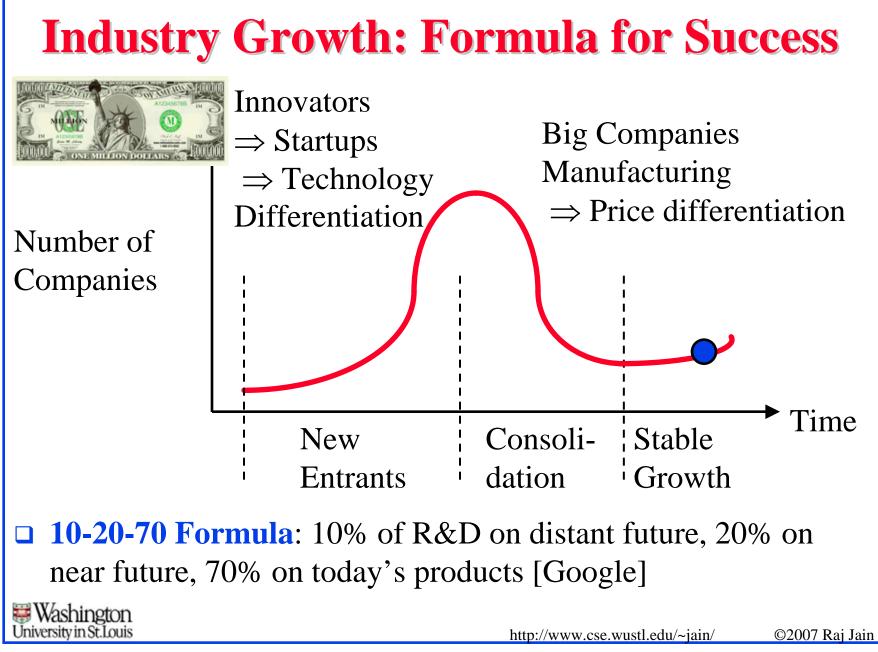
http://www.cse.wustl.edu/~jain/

□ Ref:<u>http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html</u>

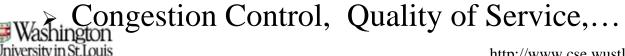
http://www.cse.wustl.edu/~jain/

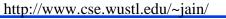

Why to worry about Internet 3.0?

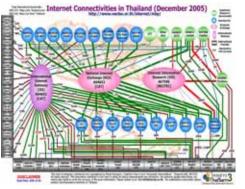


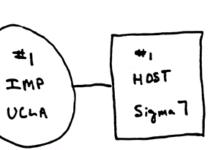

Billion dollar question!

http://www.cse.wustl.edu/~jain/

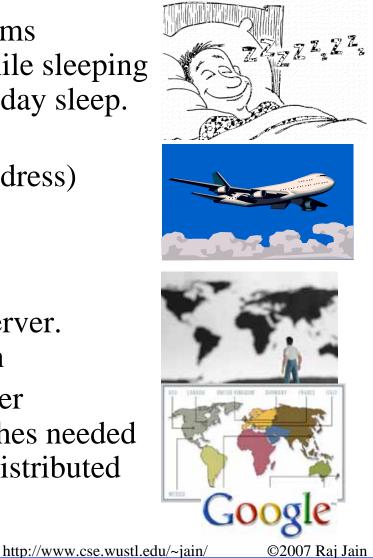

Internet Generations


□ **Internet 1.0** (1969 – 1989) – Research project


- > RFC1 is dated April 1969.
- > ARPA project started a few years earlier
- > IP, TCP, UDP
- Mostly researchers
- Industry was busy with proprietary protocols: SNA, DECnet, AppleTalk, XNS


□ Internet 2.0 (1989 – Present) – Commerce \Rightarrow new requirements

- Security RFC1108 in 1989
- > NSFnet became commercial
- > Inter-domain routing: OSPF, BGP,
- > IP Multicasting
- > Address Shortage IPv6



Ten Problems with Current Internet

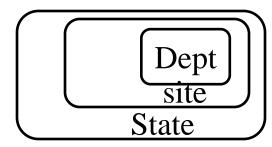
- Assumes live and awake end-systems
 Does not allow communication while sleeping
 Many energy conscious systems today sleep.
- 2. Identity and location in one (IP Address) Makes mobility complex.
- 3. Location independent addressing
 ⇒ Most services require nearest server.
 ⇒ Also, Mobility requires location
- 4. Single-Computer to single-computer communication ⇒ Numerous patches needed for communication with globally distributed systems.
 Washington

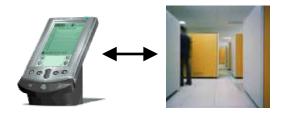

Problems (cont)

5. No representation for real end system: the human.

6. Designed for research
⇒ Trusted systems
Used for Commerce
⇒ Untrusted systems

Washington


7. Control, management, and Data path are intermixed \Rightarrow security issues



Problems (cont)

- 8. Difficult to represent organizational, administrative hierarchies with just two levels: domain and inter-domain
- 9. Symmetric Protocols
 ⇒ No difference between a mote and a Google server.
- 10. Stateless ⇒ Can't remember a flow ⇒ QoS difficult.
 QoS is generally for a flow and not for one packet

Washington

http://www.cse.wustl.edu/~jain/

Our Proposed Solution: GINA

Generalized Inter-Networking Architecture

- Take the best of what is already known
 - > Wireless Networks, Optical networks, ...
 - > Transport systems: Airplane, automobile, ...
 - Communication systems: Wired Phone networks, Cellular networks,...
- Develop a consistent general purpose, evolvable architecture that can be customized by implementers, service providers, and users

🖾 Washington rsity in St Loui

http://www.cse.wustl.edu/~jain/

GINA: Overview

Generalized Internet Networking Architecture

- 1. Separates address and ID \Rightarrow Allows mobility
- 2. Hybrid (Packet and stream based) communication \Rightarrow Allows strict real time constraints
- 3. Delegation to servers \Rightarrow Allows energy conservation and simple devices
- 4. Control and data path separation \Rightarrow Allows non-packet based (e.g., power grid, wavelength routers, SONET routers) along with packet based data. The control is pure packet based.
- 5. Service based IDs = Distributed servers Allows mxn cast.

http://www.cse.wustl.edu/~jain/

Names, IDs, Addresses

Name: John Smith

ID: 012-34-5678

Address: 1234 Main Street Big City, MO 12345 USA

□ Address changes as you move, ID and Names remain the same.

Examples:

- > Names: Company names, DNS names (google.com)
- > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number

Addresses: Wired phone numbers, IP addresses Washington http://www.cse.wustl.edu/~jain/

Objects in GINA

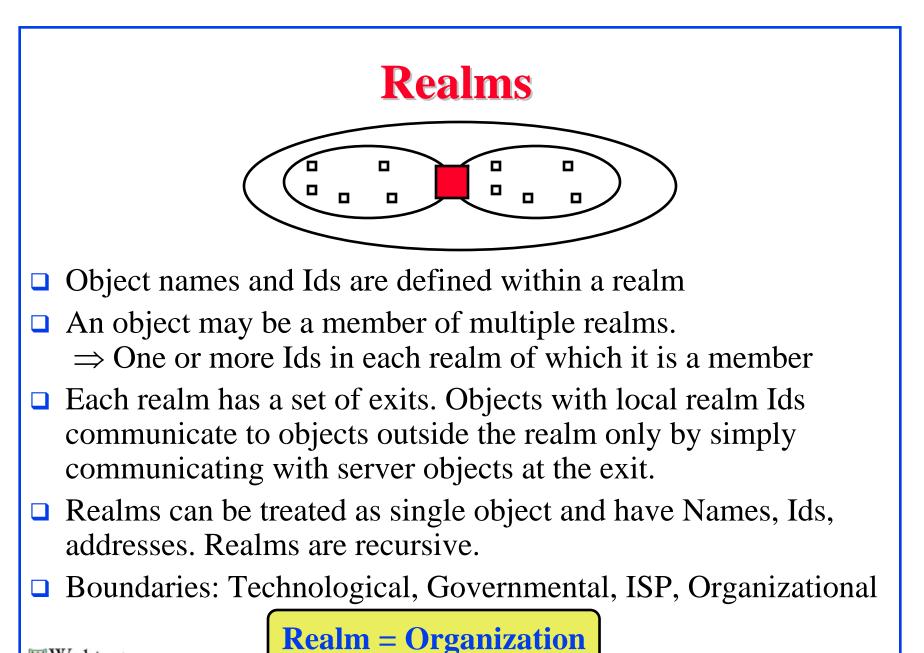
- Object = Addressable Entity
- Current: End-Systems and Intermediate Systems
- GINA:
 - Computers, Routers/Firewalls....
 - > Networks
 - > Humans
 - Companies, Departments, Cities, States, Countries, Power grids
 - > Process in a computer

- es,
- Recursive ⇒ Set of Objects is also one object,
 e.g., Networks of Networks

You can connect to a human, organization, or a department

Washington

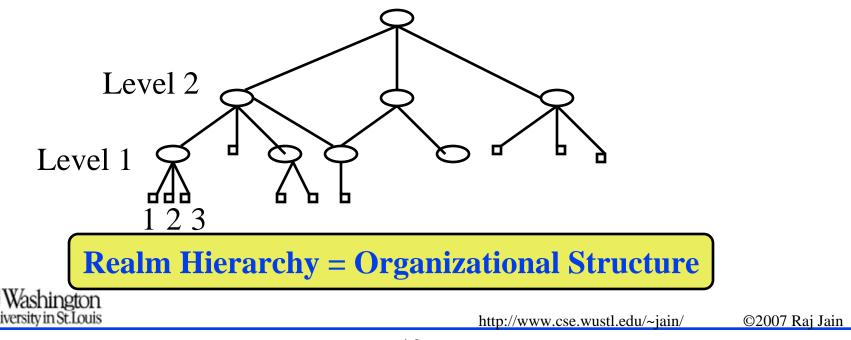
http://www.cse.wustl.edu/~jain/


Names, Ids, Addresses, and Keys

□ Each Object has:

- Names: ASCII strings for human use
- > ID<u>s</u>: Numeric string for computer use
- Addresses: where the Object is located
 Home Address, Current Address
- > Keys: Public, Private, Secret
- > Other attributes, Computer Power, Storage capacity
- Each object has one or more IDs, zero or more names, one or more addresses and zero or more other attributes

You connect to an ID not an address \Rightarrow Allows Mobility



Washington

http://www.cse.wustl.edu/~jain/

Hierarchy of IDs

- □ Universe is organized as a hierarchy of realms
- Each realm has a set of parents and a set of children
- Parent Ids can be prefixed to realm ids
- \Box A child may have multiple parents \Rightarrow Hierarchy is not a tree
- Any path to the root of a level gives the ID for the object at that level, e.g., level2_id.level1_id...object_id = level2 id of object

Object Addresses

- □ Address of an object indicates its *physical attachment point*
- □ Networks are organized as a set of *zones*
- Object address in the current zone is sufficient to reach it inside that zone
- Each object registers its names, addresses, IDs, and attributes with the registry of the relevant realms
- □ Zones are objects and have Ids, realms, addresses too
- An object's address at higher level zones is obtained by prefixing it with of addresses of ancestor zones

Zonal Hierarchy = Network Structure

Routing

- **Based on connectivity**
- □ Routing organized as paths through several levels of hierarchy
- □ At each level packets follow an optimal path from the entry point to that level to exit point in that zone
- Routing table exchanges at each level are used to find the optimal paths at that level

Connectivity Graph

Highly scalable hierarchical routing

http://www.cse.wustl.edu/~jain/

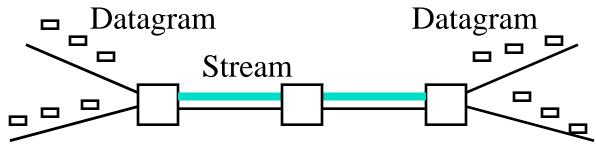
Server Objects

- Each realm has a set of server objects, e.g., forwarding, authentication, encryption,
- □ Some objects have built-in servers, e.g., an "enterprise router" may have forwarding, encryption, authentication services.
- □ Other objects rely on the servers in their realm
- □ Forwarding servers are located at the boundary of two realms
- □ Encryption servers encrypt the packets
- Authentication servers (AS) add their signatures to packets and verify signatures of received packets..
- Storage servers store packets while the object may be sleeping and may optionally aggregate/compress/transform/disseminate data. Could wake up objects.
- Persistent connections: Across system restarts, HW replacement, Object mobility

Servers allow simple energy efficient end devices

Washington

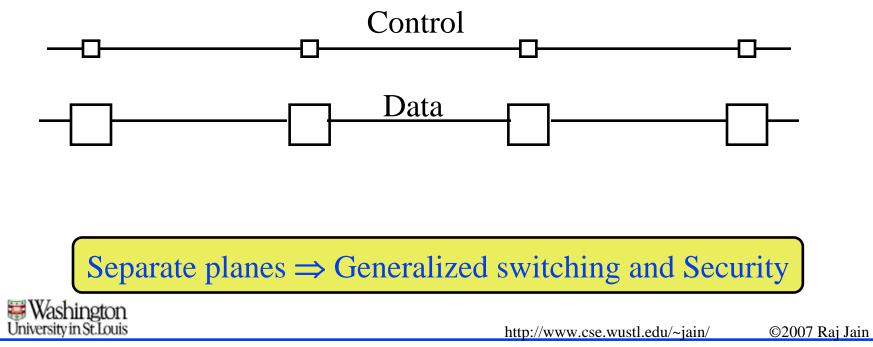
Packet Headers

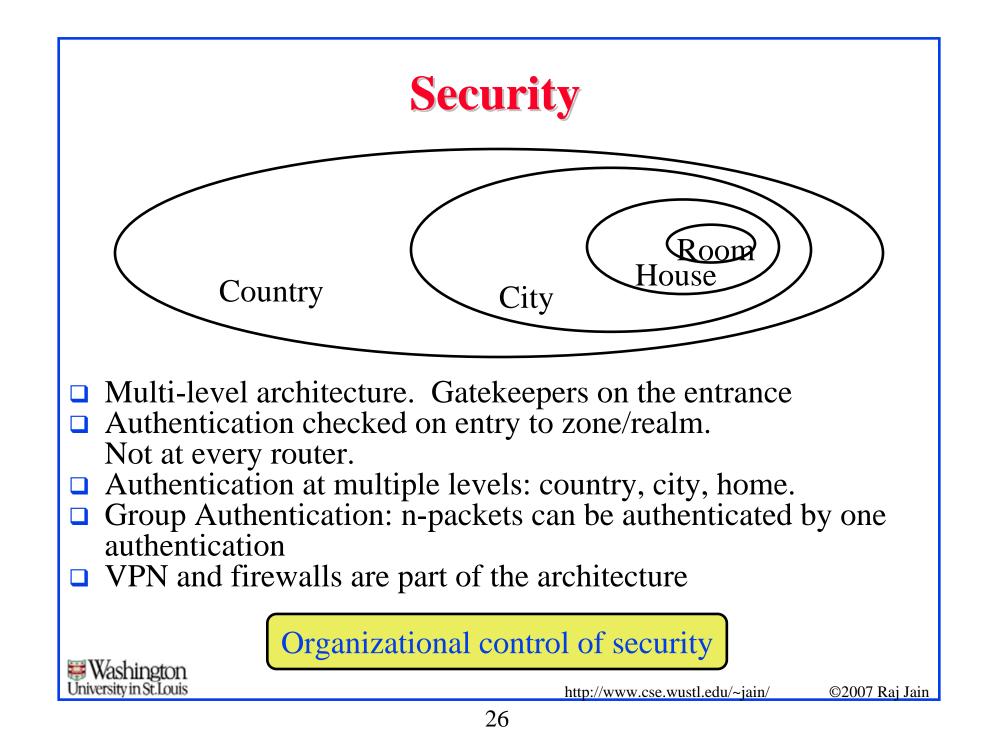

- You have to know the name of the destination to be able to communicate with it.
- The destination name has to be up to the level where you have a common ancestor.
- The names can be translated to the ID of the destination by using registries at appropriate levels
- □ The packets contain either Ids or addresses of the destination
- □ Current level Ids are translated to address

Packets contain IDs \Rightarrow Network handles mobility

Packet and Circuit Switching

- □ Packets are good for sharing. Circuits are good for isolation.
- \Box Critical applications need isolation \Rightarrow Use separate networks.
- □ When Internet 1.0 was designed, the circuit was the competition.
- Latest wireless networks, e.g., WiMAX offers both circuits and packets
- □ GINA offers both packet and circuit switching with intermediate granularities of multigrams and streams.


Packets, multigrams, flows, streams \Rightarrow Multiple levels of isolation


Washington

http://www.cse.wustl.edu/~jain/

Control and Data Plane Separation

- Streams use control channel and data channel that may have separate paths
- Data plane can be packets, wavelengths, power grids,...

Gatekeepers

- Gatekeepers also enforce policies and do policing (Monitor bandwidth, type of traffic, contents)
- May provide storage for a limited time (Helps sleeping entities save energy)
- □ Add authentication headers (country, city, home, level)
- End systems can delegate the "TCP" responsibility on gatekeepers
- □ All services do not have to have reside in each gatekeeper.
- Gatekeepers may also delegate services to other servers
- Application-specific gatekeepers

Organizational control of all policies

_	Feature	Internet 1.0	Internet 3.0
1.	Energy Efficiency	Always-on	Green \Rightarrow Mostly Off
2.	Mobility	Mostly stationary computers	Mostly mobile <i>objects</i>
3.	Computer-Human Relationship	Multi-user systems ⇒ Machine to machine comm.	Multi-systems user \Rightarrow Personal comm. systems
4.	End Systems	Single computers	Globally distributed systems
5.	Protocol Symmetry	Communication between equals \Rightarrow Symmetric	Unequal: PDA vs. Google \Rightarrow Asymmetric
6.	Design Goal	Research \Rightarrow Trusted Systems	Commerce \Rightarrow No TrustMap to organizational structure
7.	Ownership	No concept of ownership	Hierarchy of ownerships, administration communities
8.	Sharing	Sharing \Rightarrow Interference, QoS Issues	Sharing <i>and</i> Isolation \Rightarrow Critical infrastructure
9.	Switching units	Packets	Packets, Circuits, Wavelengths, Electrica Power Lines,
10.	Applications	Email and Telnet	Information Retrieval, Distributed Computing, Distributed Storage, Data diffusion

- 1. Internet 3.0 is the next generation of Internet.
- 2. It must be green (energy efficient), secure, allow mobility.
- 3. Must be designed for commerce.
- 4. Active industry involvement in the design essential. Leading networking companies must actively participate.
- 5. Our proposal Generalized InterNet Architecture (GINA) addresses many issues.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/

