

- 1. What is Internet 3.0?
- 2. Why should you keep on the top of Internet 3.0?
- 3. What are we missing in the current Internet?
- 4. Our Proposed Architecture for Internet 3.0: GINA

 Washington

 IUPUI, February 8, 2008

 http://www.cse.wustl.edu/~jain/

 ©2008 Raj Jain

What is Internet 3.0?

- □ Internet 3.0 is the architecture of the next generation of Internet
- □ Named by me along the lines of "Web 2.0"
- National Science Foundation is planning a \$300M+ research and infrastructure program on next generation Internet
 - Testbed: "Global Environment for Networking Innovations" (GENI)
 - > Architecture: "Future Internet Design" (FIND).
- □ Internet 3.0 is more intuitive then GENI/FIND
- Most of the networking researchers will be working on GENI/FIND for the coming years
- Q: How would you design Internet today? Clean slate design.
- □ Ref: <u>http://www.nsf.gov/cise/cns/geni/</u>

Washington

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

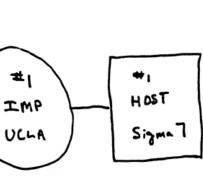
Internet Generations

□ **Internet 1.0** (1969 – 1989) – Research project

- > RFC1 is dated April 1969.
- > ARPA project started a few years earlier
- > IP, TCP, UDP
- Mostly researchers
- Industry was busy with proprietary protocols: SNA, DECnet, AppleTalk, XNS

□ Internet 2.0 (1989 – Present) – Commerce \Rightarrow new requirements

- Security RFC1108 in 1989
- > NSFnet became commercial
- > Inter-domain routing: OSPF, BGP,


IUPUI, February 8, 2008

- > IP Multicasting
- > Address Shortage IPv6

Congestion Control, Quality of Service,...

http://www.cse.wustl.edu/~jain/

Ten Problems with Current Internet

- Designed for research
 ⇒ Trusted systems
 Used for Commerce
 ⇒ Untrusted systems
- 2. Control, management, and Data path are intermixed \Rightarrow security issues
- 3. Difficult to represent organizational, administrative hierarchies and relationships. Perimeter based.

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

Problems (cont)

- Identity and location in one (IP Address) 4. Makes mobility complex.
- 5. Location independent addressing \Rightarrow Most services require nearest server. \Rightarrow Also, Mobility requires location

6. No representation for real end system: the human.

IUPUI, February 8, 2008

Problems (cont)

7. Assumes live and awake end-systems Does not allow communication while sleeping.
Many energy conscious systems today sleep.

- 8. Single-Computer to single-computer communication ⇒ Numerous patches needed for communication with globally distributed systems.
- 9. Symmetric Protocols
 ⇒ No difference between a PDA and a Google server.

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

Problems (Cont)

10. Stateless ⇒ Can't remember a flow ⇒ QoS difficult. QoS is generally for a flow and not for one packet

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

Our Proposed Solution: GINA

Generalized Inter-Networking Architecture

- □ Take the best of what is already known
 - > Wireless Networks, Optical networks, ...
 - > Transport systems: Airplane, automobile, ...
 - Communication systems: Wired Phone networks, Cellular networks,...
- Develop a consistent general purpose, evolvable architecture that can be customized by implementers, service providers, and users

🛱 Washington

Iniversity in St. Louis

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

GINA: Overview

Generalized Internet Networking Architecture

- 1. Separates address and ID \Rightarrow Allows mobility
- 2. Distinguishes *logical* and *physical* connectivity
- 3. Hybrid (Packet and stream based) communication \Rightarrow Allows strict real time constraints
- 4. Delegation to servers \Rightarrow Allows energy conservation and simple devices
- 5. Control and data path separation \Rightarrow Allows non-packet based (e.g., power grid, wavelength routers, SONET routers) along with packet based data. The control is pure packet based.
- 6. Service based IDs = Distributed servers Allows mxn cast.

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

Names, IDs, Addresses

Name: John Smith

ID: 012-34-5678

Address: 1234 Main Street Big City, MO 12345 USA

□ Address changes as you move, ID and Names remain the same.

Examples:

- Names: Company names, DNS names (microsoft.com)
- > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number

> Addresses: Wired phone numbers, IP addresses

Ashington

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

Objects in GINA

- Object = Addressable Entity
- **Current: End-Systems and Intermediate Systems**
- GINA:

Iniversity in St. Louis

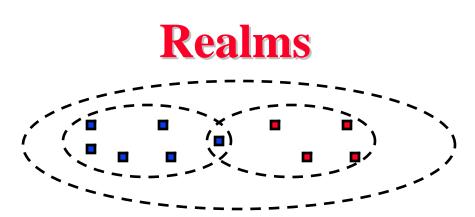
- > Computers, Routers/Firewalls....
- > Networks
- > Humans
- > Companies, Departments, Cities, States, Countries, Power grids
- > Process in a computer
- > Recursive \Rightarrow Set of Objects is also one object, e.g., Networks of Networks

You can connect to a human, organization, or a department Washington

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

Names, Ids, Addresses, and Keys


□ Each Object has:

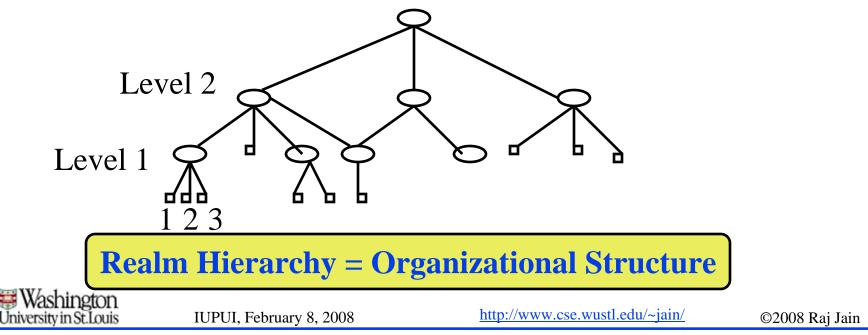
Vashington

- Names: ASCII strings for human use
- > ID<u>s</u>: Numeric string for computer use
- Addresses: where the Object is located
 Home Address, Current Address
- > Keys: Public, Private, Secret
- > Other attributes, Computer Power, Storage capacity
- Each object has one or more IDs, zero or more names, one or more addresses and zero or more other attributes

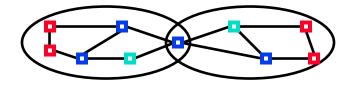
You connect to an ID not an address \Rightarrow Allows Mobility

IUPUI, February 8, 2008

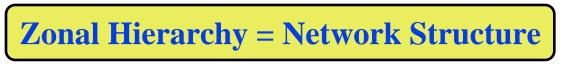
- Object names and Ids are defined within a realm
- A realm is a logical grouping of objects that have a certain level of trust
- Objects inside the realms communicate with each other at a higher level of trust than with objects outside the realms
- Objects can be and generally are members of multiple realms
- □ Realm managers set policies for packets crossing the realm boundaries
- □ Realms can be treated as single object and have names, Ids, addresses.
- □ Realms are recursive \Rightarrow A group of realms = one realm
- **Boundaries:** Organizational, Technological, Governmental, ISP



IUPUI, February 8, 2008


http://www.cse.wustl.edu/~jain/

Hierarchy of IDs


- Universe is organized as a hierarchy of realms
- Each realm has a set of parents and a set of children
- Parent Ids can be prefixed to realm ids
- \Box A child may have multiple parents \Rightarrow Hierarchy is not a tree
- Any path to the root of a level gives the ID for the object at that level, e.g., level2_id.level1_id...object_id = level2 id of object

- □ Address of an object indicates its *physical attachment point*
- □ Networks are organized as a set of *zones*
- Object address in the current zone is sufficient to reach it inside that zone
- Zones are physical grouping of objects based on connectivity.
 Does not imply trust.
- □ Each object registers its names, addresses, IDs, and attributes with the registry of the relevant realms and zones
- □ Zones are objects and have Ids, realms, addresses too
- An object's address at higher level zones is obtained by prefixing it with of addresses of ancestor zones

IUPUI, February 8, 2008

Vashington

rsity in St Louis

http://www.cse.wustl.edu/~jain/

Physical vs Logical Connectivity

- Physically and logically connected:
 All computers in my lab
 = Private Network,
 Firewalled Network
- Physically disconnected but logically connected:

My home and office computers

 Physically connected but logically disconnected: Passengers on a plane, Neighbors, Conference attendees sharing a wireless network, A visitor

Physical connectivity ≠ **Trust**

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

Server and Gatekeeper Objects

- Each realm has a set of server objects, e.g., forwarding, authentication, encryption, storage, transformation, ...
- Some objects have built-in servers, e.g., an "enterprise router" may have forwarding, encryption, authentication services.
- □ Other objects rely on the servers in their realm
- □ Encryption servers encrypt the packets
- Authentication servers (AS) add their signatures to packets and verify signatures of received packets..
- Storage servers store packets while the object may be sleeping and may optionally aggregate/compress/transform/disseminate data. Could wake up objects.
- Gatekeepers enforce policies: Security, traffic, QoS

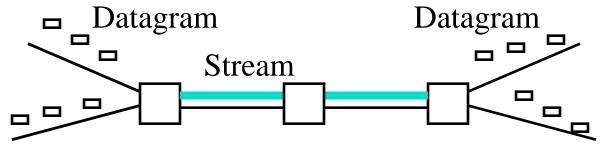
Servers allow simple energy efficient end devices

IUPUI, February 8, 2008

shington

ersity in St. Louis

Packet Headers

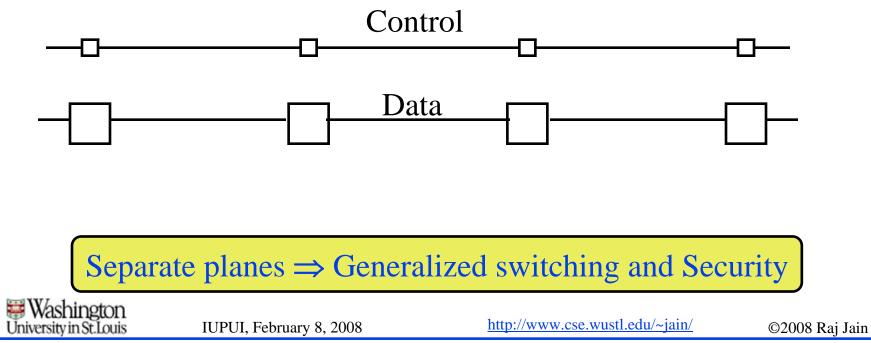

- You have to know the name of the destination to be able to communicate with it.
- The destination name has to be up to the level where you have a common ancestor.
- The names can be translated to the ID of the destination by using registries at appropriate levels
- □ The packets contain either Ids or addresses of the destination
- □ Current level Ids are translated to address

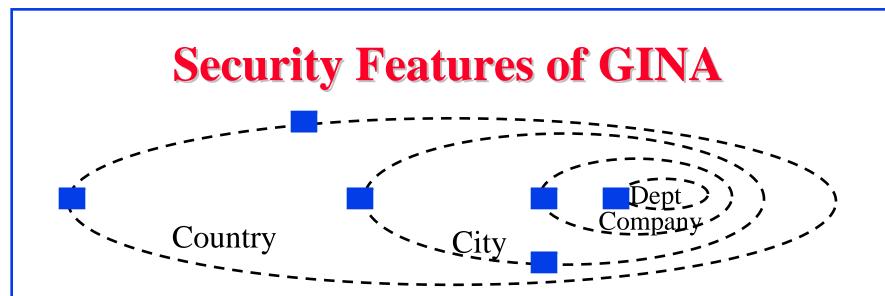
Packets contain IDs \Rightarrow Network handles mobility

🐺 Washington

Packet and Circuit Switching

- □ Packets are good for sharing. Circuits are good for isolation.
- \Box Critical applications need isolation \Rightarrow Use separate networks.
- □ When Internet 1.0 was designed, the circuit was the competition.
- Latest wireless networks, e.g., WiMAX offers both circuits and packets
- GINA offers both packet and circuit switching with intermediate granularities of multigrams and streams.


Packets, **multigrams**, flows, streams \Rightarrow Multiple levels of isolation


IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

Control and Data Plane Separation

- Streams use control channel and data channel that may have separate paths
- Data plane can be packets, wavelengths, power grids,...

- 1. Separate trust (logical) and connectivity (physical) relationships \Rightarrow Avoids perimeteric definition of security
- 2. Separate control and data planes
- 3. Separation of identity and address \Rightarrow Location privacy
- 4. Levels of trusts
- 5. Personal introductions (Certificates)



IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

	Feature	Internet 1.0	Internet 3.0
1.	Energy Efficiency	Always-on	Green \Rightarrow Mostly Off
2.	Mobility	Mostly stationary computers	Mostly mobile <i>objects</i>
3.	Computer-Human Relationship	Multi-user systems ⇒ Machine to machine comm.	Multi-systems user \Rightarrow Personal comm. systems
4.	End Systems	Single computers	Globally distributed systems
5.	Protocol Symmetry	Communication between equals \Rightarrow Symmetric	Unequal: PDA vs. big server \Rightarrow Asymmetric
6.	Design Goal	Research \Rightarrow Trusted Systems	Commerce \Rightarrow No TrustMap to organizational structure
7.	Ownership	No concept of ownership	Hierarchy of ownerships, administrations communities
8.	Sharing	Sharing \Rightarrow Interference, QoS Issues	Sharing <i>and</i> Isolation \Rightarrow Critical infrastructure
9.	Switching units	Packets	Packets, Circuits, Wavelengths, Electrica Power Lines,
10.	Applications	Email and Telnet	Information Retrieval, Distributed Computing, Distributed Storage, Data diffusion

- 1. Internet 3.0 is the next generation of Internet.
- 2. It must be green (energy efficient), secure, allow mobility.
- 3. Must be designed for commerce.
- 4. Active industry involvement in the design essential. Leading networking companies must actively participate.
- 5. Our proposal Generalized InterNet Architecture (GINA) addresses many issues.

Washington

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/

References

Raj Jain, "Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation," Military Communications Conference, Washington, DC, October 23-25, 2006, <u>http://www.cse.wustl.edu/~jain/papers/gina.htm</u>

IUPUI, February 8, 2008

http://www.cse.wustl.edu/~jain/