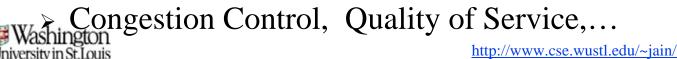


- 1. What is Internet 3.0?
- 2. Why should you keep on the top of Internet 3.0?
- 3. What are we missing in the current Internet?
- 4. Our Proposed Architecture for Internet 3.0

Internet 3.0

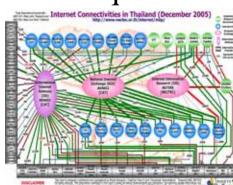
- □ US National Science Foundation is planning a \$300M+ research and infrastructure program on next generation Internet
 - Testbed: "Global Environment for Networking Innovations" (GENI)
 - > Architecture: "Future Internet Design" (FIND).
- Q: How would you design Internet today? Clean slate design.
- □ Ref: <u>http://www.nsf.gov/cise/cns/geni/</u>
- Most of the networking researchers will be working on GENI/FIND for the coming years
- Internet 3.0 is the name of the Washington University project on the next generation Internet
- □ Named by me along the lines of "Web 2.0"
- Internet 3.0 is more intuitive then GENI/FIND Washington University in St. Louis

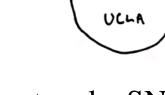

Internet Generations

□ **Internet 1.0** (1969 – 1989) – Research project

- > RFC1 is dated April 1969.
- > ARPA project started a few years earlier
- > IP, TCP, UDP
- Mostly researchers
- Industry was busy with proprietary protocols: SNA, DECnet, AppleTalk, XNS

□ Internet 2.0 (1989 – Present) – Commerce \Rightarrow new requirements


- Security RFC1108 in 1989
- > NSFnet became commercial
- > Inter-domain routing: OSPF, BGP,
- > IP Multicasting
- > Address Shortage IPv6



©2008 Raj Jain

HOST

Sizma l

#1

IMP

Ten Problems with Current Internet

- Designed for research
 ⇒ Trusted systems
 Used for Commerce
 ⇒ Untrusted systems
- 2. Control, management, and Data path are intermixed \Rightarrow security issues
- 3. Difficult to represent organizational, administrative hierarchies and relationships. Perimeter based.

Problems (cont)

- Identity and location in one 4. (IP Address) Makes mobility complex.
- 5. Location independent addressing \Rightarrow Most services require nearest server. \Rightarrow Also, Mobility requires location
- No representation for real end system: 6. the human.

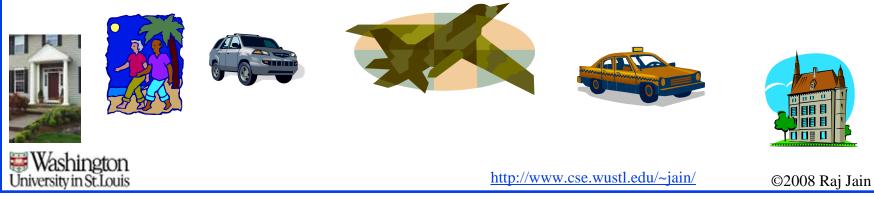
Problems (cont)

7. Assumes live and awake end-systems Does not allow communication while sleeping.
Many energy conscious systems today sleep.

- 8. Single-Computer to single-computer communication ⇒ Numerous patches needed for communication with globally distributed systems and services.
- 9. Symmetric Protocols
 ⇒ No difference between a PDA and a Google server.

Problems (Cont)

10. Stateless ⇒ Can't remember a flow ⇒ QoS difficult. QoS is generally for a flow and not for one packet



http://www.cse.wustl.edu/~jain/

Our Proposed Solution: Internet 3.0

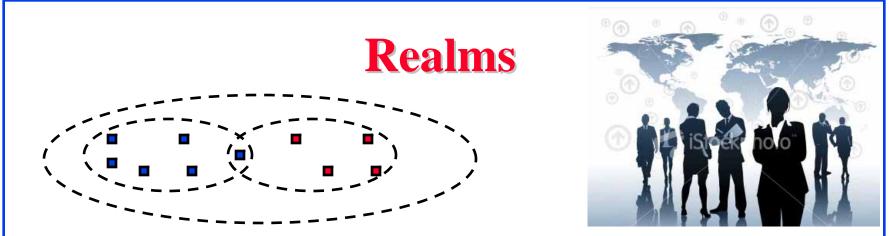
□ Take the best of what is already known

- > Wireless Networks, Optical networks, ...
- > Transport systems: Airplane, automobile, ...
- Communication: Wired Phone, Cellular nets,...
- Develop a consistent general purpose, evolvable architecture that can be customized by implementers, service providers, and users

Names, IDs, Addresses

Name: John Smith

ID: 012-34-5678

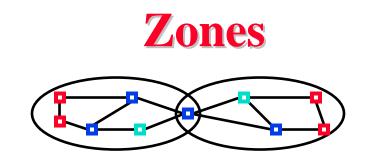

Address: 1234 Main Street Big City, MO 12345 USA

□ Address changes as you move, ID and Names remain the same.

Examples:

- > Names: Company names, DNS names (microsoft.com)
- > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number

Addresses: Wired phone numbers, IP addresses Washington niversity in St. Louis



- Object names and Ids are defined within a realm
- A realm is a logical grouping of objects that have a certain level of trust
- □ A realm represents an organization
 - > Realm managers set policies for communications
 - > Realm members can share services.
 - > Objects are generally members of multiple realms
- □ Realm Boundaries: Organizational, Governmental, ISP, P2P,...

Realm = Organization

http://www.cse.wustl.edu/~jain/

- □ Address of an object indicates its *physical attachment point*
- □ Networks are organized as a set of *zones*
- Object address in the current zone is sufficient to reach it inside that zone
- Zones are physical grouping of *attachment points* based on connectivity. Does not imply trust.

Zonal Hierarchy = Network Structure

http://www.cse.wustl.edu/~jain/

Physical vs Logical Connectivity

- Physically and logically connected:
 All computers in my lab
 = Private Network,
 Firewalled Network
- Physically disconnected but logically connected:

My home and office computers

 Physically connected but logically disconnected: Passengers on a plane, Neighbors, Conference attendees sharing a wireless network, A visitor

Physical connectivity ≠ **Trust**

http://www.cse.wustl.edu/~jain/

Server and Gatekeeper Objects

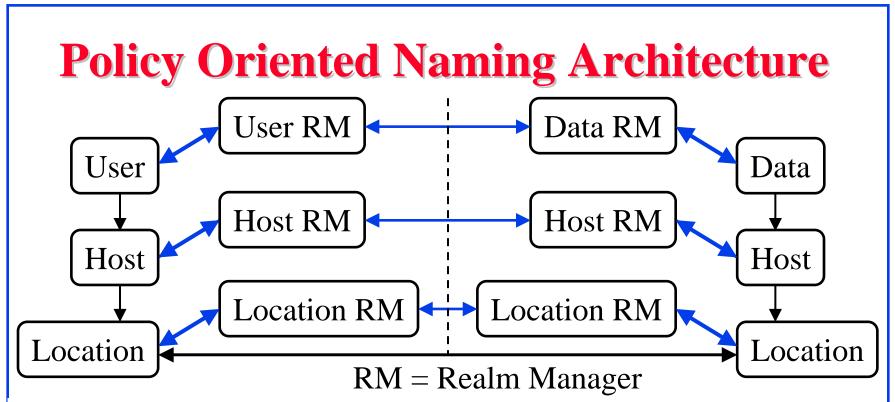
- Each realm has a set of server objects, e.g., forwarding, authentication, encryption, storage, transformation, ...
- Some objects have built-in servers, e.g., an "enterprise router" may have forwarding, encryption, authentication services.
- □ Other objects rely on the servers in their realm
- Authentication servers (AS) add their signatures to packets and verify signatures of received packets..
- Storage servers store packets while the object may be sleeping and may optionally aggregate/compress/transform data.
 Could wake up objects.
- Objects can appoint proxies for any function(s)
- Gatekeepers enforce policies: Security, traffic, QoS

Servers allow simple energy efficient end devices

Washington

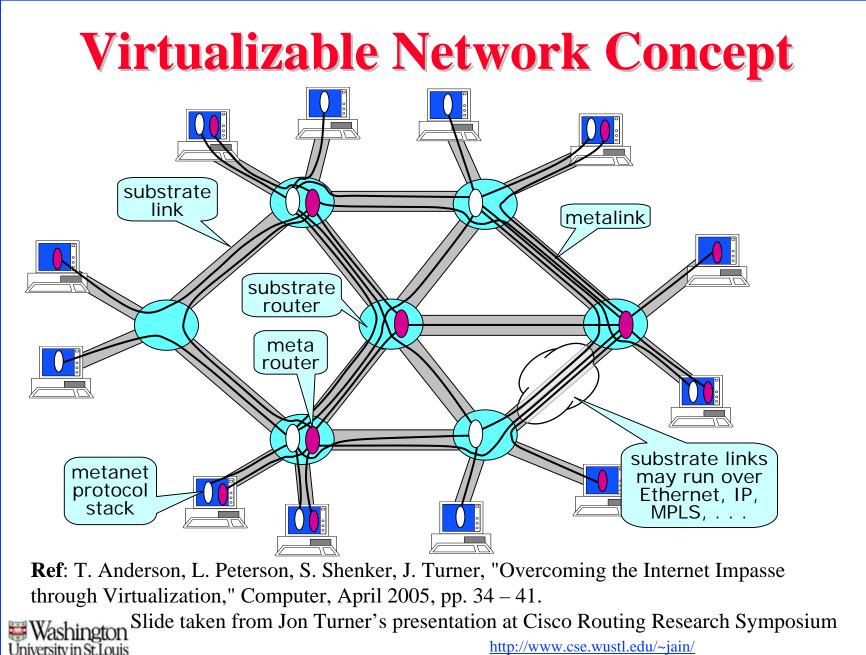
User- Host- and Data Centric Models

- □ All discussion so far assumed host-centric communication
 - > Host mobility and multihoming
 - > Policies, services, and trust are related to hosts
- User Centric View:

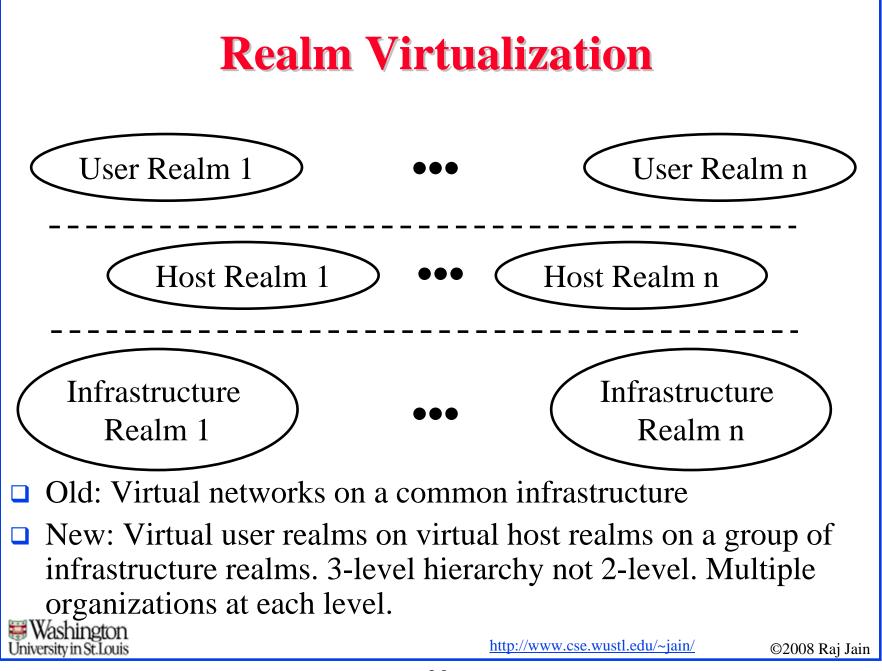

Washington

Iniversity in St Loui

- > Bob wants to watch a movie
- Starts it on his media server
- Continues on his iPod during commute to work
- Movie exists on many servers
- > Bob may get it from different servers at different times or multiple servers at the same time
- □ Can we just give addresses to users and treat them as hosts?
 No! ⇒ Policy Oriented Naming Architecture (PONA)


- □ Both Users and data need hosts for communication
- Data is easily replicable. All copies are equally good.
- Users, Hosts, Infrastructure, Data belong to different realms (organizations).

Each object has to follow its organizational policies. Washington University in St. Louis


 http://www.cse.wustl.edu/~jain/
 ©2008 Raj Jain

PONA (Cont)

- User and data realms are higher level than host realms
- Most communication is user-data communication
- User, Host, and Data can move independently
 - > Hosts move from one location to next
 - > Users and data can move from one host to the next
- $\Box \text{ User ID} \Rightarrow \text{Host ID} \Rightarrow \text{Host Location} = \text{Address}$
- User realm managers provide User ID to Host ID translation
- □ Realm managers enforce organizational policies
- Realm managers setup trust relationships between organizations
 Washington
 University in St Jours

http://www.cse.wustl.edu/~jain/

	Feature	Internet 1.0	Internet 3.0
1.	Energy Efficiency	Always-on	Green \Rightarrow Mostly Off
2.	Mobility	Mostly stationary computers	Mostly mobile <i>objects</i>
3.	Computer-Human Relationship	Multi-user systems ⇒ Machine to machine comm.	Multi-systems user ⇒ Personal comm. systems
4.	End Systems	Single computers	Globally distributed systems
5.	Protocol Symmetry	Communication between equals \Rightarrow Symmetric	Unequal: PDA vs. big server \Rightarrow Asymmetric
6.	Design Goal	Research \Rightarrow Trusted Systems	Commerce \Rightarrow No TrustMap to organizational structure
7.	Ownership	No concept of ownership	Hierarchy of ownerships, administrations communities
8.	Sharing	Sharing \Rightarrow Interference, QoS Issues	Sharing <i>and</i> Isolation \Rightarrow Critical infrastructure
9.	Switching units	Packets	Packets, Circuits, Wavelengths, Electrica Power Lines,
10.	Applications	Email and Telnet	Information Retrieval, Distributed Computing, Distributed Storage, Data diffusion

- 1. Internet 3.0 is the next generation of Internet.
- 2. It must be secure, allow mobility, and be energy efficient.
- 3. Must be designed for commerce ⇒ Must represent multi-organizational structure and policies
- 4. Moving from host centric view to user-data centric view \Rightarrow Important to represent users and data objects
- 5. Users, Hosts, and infrastructures belong to different realms (organizations). Users/data/hosts should be able to move freely without interrupting a network connection.

Washington

http://www.cse.wustl.edu/~jain/

References

 Jain, R., "Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation," in Proceedings of Military Communications Conference (MILCOM 2006), Washington, DC, October 23-25, 2006.

http://www.cse.wustl.edu/~jain/

References: Coming Soon

- Jianli Pan, Subharthi Paul, Raj Jain, and Mic Bowman, "MILSA: A Mobility and Multihoming Supporting Identifier-Locator Split Architecture for Naming in the Next Generation Internet,," submitted to Globecom 2008, Nov 2008.
- 3. Subharthi Paul, Jianli Pan, Raj Jain and Mic Bowman, "A Survey of Naming Systems: Classification and Analysis of the Current Schemes Using a New Naming Reference Model," to be submitted for publication, 2008.
- Subharthi Paul, Raj Jain, Jianli Pan, and Mic Bowman, "A Vision of the Next Generation Internet: A Policy Oriented View," Submitted to British Computer Society Conference on Visions of Computer Science, Sep 2008.

http://www.cse.wustl.edu/~jain/