


Washington University in Saint Louis Saint Louis, MO 63130

Jain@wustl.edu

Keynote Speech at ACM Multimedia 2008 Conference, Vancouver, BC, Canada, October 27-31, 2008

These slides and Audio/Video recordings of this talk are at:

http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

### **Multimedia and Internet**













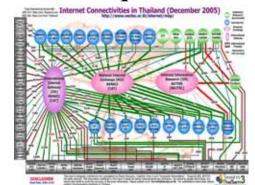


- 1. What is Internet 3.0?
- 2. Why should you keep on the top of Internet 3.0?
- 3. What are we missing in the current Internet?
- 4. Our Proposed Architecture for Internet 3.0

Acknowledgement: This research is sponsored by a grant from Intel Research Council.



#### **Internet 3.0**


- □ US National Science Foundation is planning a \$300M+ research and infrastructure program on next generation Internet
  - > Testbed: "Global Environment for Networking Innovations" (GENI)
  - > Architecture: "Future Internet Design" (FIND).
- □ Q: How would you design Internet today? Clean slate design.
- □ Ref: <a href="http://www.nsf.gov/cise/cns/geni/">http://www.nsf.gov/cise/cns/geni/</a>
- Most of the networking researchers will be working on GENI/FIND for the coming years
- Internet 3.0 is the name of the Washington University project on the next generation Internet
- Named by me along the lines of "Web 2.0"
- ☐ Internet 3.0 is more intuitive then GENI/FIND

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

### **Internet Generations**

- □ **Internet 1.0** (1969 1989) Research project
  - > RFC1 is dated April 1969.
  - > ARPA project started a few years earlier
  - > IP, TCP, UDP
  - > Mostly researchers
  - > Industry was busy with proprietary protocols: SNA, DECnet, AppleTalk, XNS
- □ Internet 2.0 (1989 Present) Commerce ⇒ new requirements
  - > Security RFC1108 in 1989
  - > NSFnet became commercial
  - > Inter-domain routing: OSPF, BGP,
  - > IP Multicasting
  - Address Shortage IPv6
  - Congestion Control, Quality of Service,...



http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

©2008 Raj Jain

HOST

IMP

UCHA

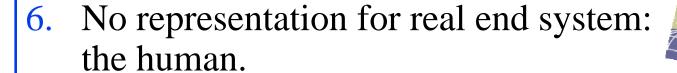
#### **Ten Problems with Current Internet**

- 1. Designed for research
  - ⇒ Trusted systems Used for Commerce
  - ⇒ Untrusted systems
- Control, management, and Data path are intermixed ⇒ security issues
- 3. Difficult to represent organizational, administrative hierarchies and relationships. Perimeter based.





Trusted
Un-trusted




### **Problems (cont)**

 Identity and location in one (IP Address)
 Makes mobility complex.



- 5. Location independent addressing⇒ Most services require
  - nearest server.
  - ⇒ Also, Mobility requires location







### **Problems (cont)**

7. Assumes live and awake end-systems
 Does not allow communication while
 sleeping.
 Many energy conscious systems today
 sleep.



8. Single-Computer to single-computer communication ⇒ Numerous patches needed for communication with globally distributed systems and services.



9. Symmetric Protocols⇒ No difference between a PDA and a Google server.





http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

### **Problems (Cont)**

10. Stateless ⇒ Can't remember a flow
⇒ QoS difficult.
QoS is generally for a flow and not for one packet





#### **Internet Multimedia Issues**













■ Mobility, QoS, transformation, multicasting, security, bandwidth



### Our Proposed Solution: Internet 3.0

- □ Take the best of what is already known
  - > Wireless Networks, Optical networks, ...
  - > Transport systems: Airplane, automobile, ...
  - > Communication: Wired Phone, Cellular nets,...
- □ Develop a consistent general purpose, evolvable architecture that can be customized by implementers, service providers, and users















http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

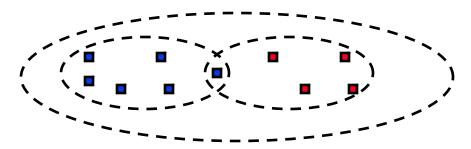
### Names, IDs, Addresses



Name: John Smith

ID: 012-34-5678

#### **Address**:


1234 Main Street Big City, MO 12345 USA

- □ Address changes as you move, ID and Names remain the same.
- **Examples**:
  - > Names: Company names, DNS names (microsoft.com)
  - > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number
  - > Addresses: Wired phone numbers, IP addresses

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

#### **Realms**





- Object names and Ids are defined within a realm
- □ A realm is a **logical** grouping of objects under an administrative domain
- □ The Administrative domain may be based on Trust Relationships
- A realm represents an organization
  - > Realm managers set policies for communications
  - > Realm members can share services.
  - > Objects are generally members of multiple realms
- □ Realm Boundaries: Organizational, Governmental, ISP, P2P,...



**Realm = Administrative Group** 

http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

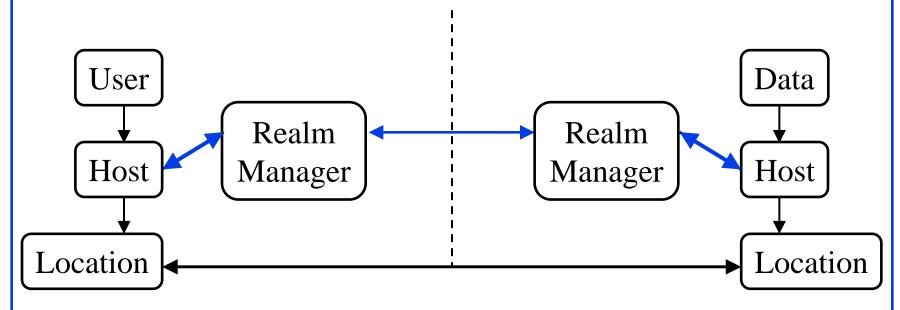
# Physical vs Logical Connectivity

- □ Physically and logically connected:All computers in my lab
  - = Private Network,Firewalled Network
- Physically disconnected but logically connected:My home and office computers
- Physically connected but logically disconnected: Passengers on a plane,
   Neighbors, Conference attendees sharing a wireless network, A visitor










**Physical connectivity** ≠ **Trust** 



http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

# **Id-Locator Split Architecture (MILSA)**



- □ Realm managers resolve current location for a given host-ID
- □ Allows mobility, multi-homing
- □ Ref: Our Globecom 2008 paper [3]



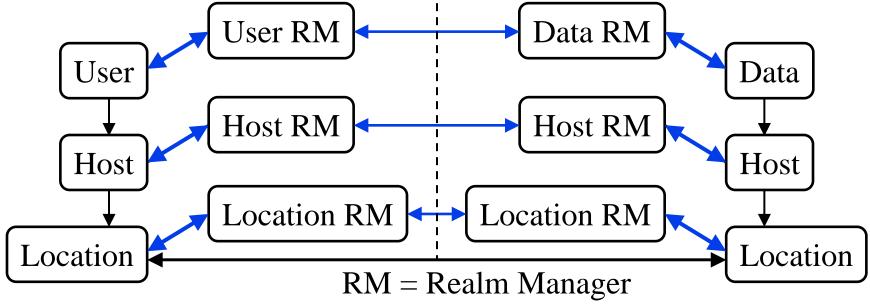
# Server and Gatekeeper Objects

- Each realm has a set of server objects, e.g., forwarding, authentication, encryption, storage, transformation, ...
- Some objects have built-in servers, e.g., an "enterprise router" may have forwarding, encryption, authentication services.
- □ Other objects rely on the servers in their realm
- Authentication servers (AS) add their signatures to packets and verify signatures of received packets..
- Storage servers store packets while the object may be sleeping and may optionally aggregate/compress/transform data.

  Could wake up objects.
- Objects can appoint proxies for any function(s)
- Gatekeepers enforce policies: Security, traffic, QoS

Servers allow simple energy efficient end devices




#### **User- Host- and Data Centric Models**

- □ All discussion so far assumed host-centric communication
  - > Host mobility and multihoming
  - > Policies, services, and trust are related to hosts
- User Centric View:
  - > Bob wants to watch a movie
  - > Starts it on his media server
  - > Continues on his iPod during commute to work
  - > Movie exists on many servers
  - > Bob may get it from different servers at different times or multiple servers at the same time
- □ Can we just give addresses to users and treat them as hosts?
   No! ⇒ Policy Oriented Naming Architecture (PONA)

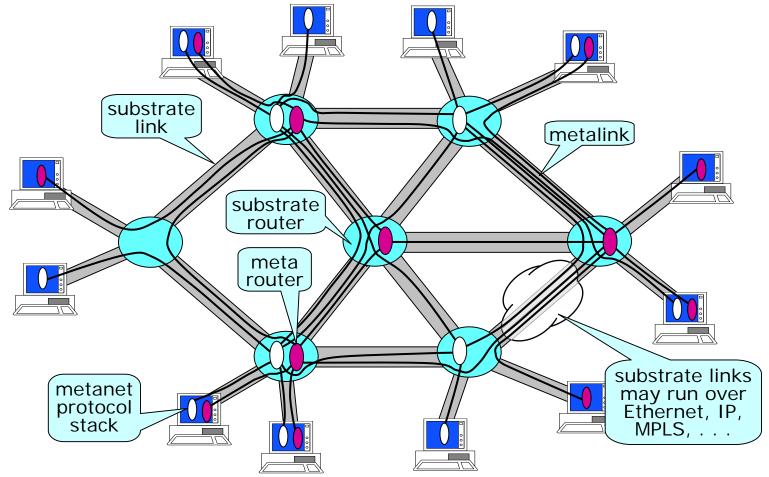








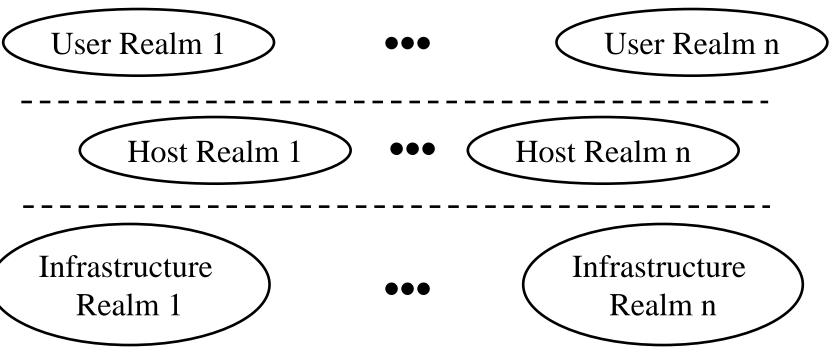
- □ Both Users and data need hosts for communication
- □ Data is easily replicable. All copies are equally good.
- □ Users, Hosts, Infrastructure, Data belong to different realms (organizations).
- Each object has to follow its organizational policies.


http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

### **PONA (Cont)**

- □ User and data realms are higher level than host realms
- Most communication is user-data communication
- □ User, Host, and Data can move independently
  - > Hosts move from one location to next
  - > Users and data can move from one host to the next
- $\square$  User ID  $\Rightarrow$  Host ID  $\Rightarrow$  Host Location = Address
- □ User realm managers provide User ID to Host ID translation
- □ Realm managers enforce organizational policies
- Realm managers setup trust relationships between organizations

http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm


# Virtualizable Network Concept



**Ref**: T. Anderson, L. Peterson, S. Shenker, J. Turner, "Overcoming the Internet Impasse through Virtualization," Computer, April 2005, pp. 34 – 41.

Washington Slide taken from Jon Turner's presentation at Cisco Routing Research Symposium <a href="http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm">http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm</a>

#### **Realm Virtualization**



- Old: Virtual networks on a common infrastructure
- New: Virtual user realms on virtual host realms on a group of infrastructure realms. 3-level hierarchy not 2-level. Multiple organizations at each level.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

| Internet 1.0 vs. Internet 3.0 |                                |                                                |                                                         |
|-------------------------------|--------------------------------|------------------------------------------------|---------------------------------------------------------|
|                               | Feature                        | Internet 1.0                                   | Internet 3.0                                            |
| 1.                            | Energy Efficiency              | Always-on                                      | Green ⇒ Mostly Off                                      |
| 2.                            | Mobility                       | Mostly stationary computers                    | Mostly mobile <i>objects</i>                            |
| 3.                            | Computer-Human<br>Relationship | Multi-user systems  ⇒ Machine to machine comm. | Multi-systems user  ⇒ Personal comm. systems            |
| 4.                            | End Systems                    | Single computers                               | Globally distributed systems                            |
| 5.                            | Protocol Symmetry              | Communication between equals  ⇒ Symmetric      | Unequal: PDA vs. big server  ⇒ Asymmetric               |
| 6.                            | Design Goal                    | Research ⇒ Trusted Systems                     | Commerce ⇒ No Trust Map to organizational structure     |
| 7.                            | Ownership                      | No concept of ownership                        | Hierarchy of ownerships, administrations, communities   |
| 8.                            | Sharing                        | Sharing ⇒ Interference,<br>QoS Issues          | Sharing <i>and</i> Isolation  ⇒ Critical infrastructure |
| 9.                            | Switching units                | Packets                                        | Packets, Circuits, Wavelengths, Electrical Power Lines, |



10.

Applications

http://www.cse.wustl.edu/~jain/talks/in3\_acm.htm

Email and Telnet

©2008 Raj Jain

Information Retrieval, Distributed

Computing, Distributed Storage,

Data diffusion

# **Summary**



- 1. Internet 3.0 is the next generation of Internet.
- 2. It must be secure, allow mobility, and be energy efficient.
- 3. Must be designed for commerce
  - ⇒ Must represent multi-organizational structure and policies
- 4. Moving from host centric view to user-data centric view
  - ⇒ Important to represent users and data objects
- 5. Users, Hosts, and infrastructures belong to different realms (organizations). Users/data/hosts should be able to move freely without interrupting a network connection.



#### References

- 1. Jain, R., "Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation," in Proceedings of Military Communications Conference (MILCOM 2006), Washington, DC, October 23-25, 2006, <a href="http://www.cse.wustl.edu/~jain/papers/gina.htm">http://www.cse.wustl.edu/~jain/papers/gina.htm</a>
- 2. Subharthi Paul, Raj Jain, Jianli Pan, and Mic Bowman, "A Vision of the Next Generation Internet: A Policy Oriented View," British Computer Society Conference on Visions of Computer Science, Sep 2008, <a href="http://www.cse.wustl.edu/~jain/papers/pona.htm">http://www.cse.wustl.edu/~jain/papers/pona.htm</a>
- 3. Jianli Pan, Subharthi Paul, Raj Jain, and Mic Bowman, "MILSA: A Mobility and Multihoming Supporting Identifier-Locator Split Architecture for Naming in the Next Generation Internet,," Globecom 2008, Nov 2008,

http://www.cse.wustl.edu/~jain/papers/milsa.htm

Washington University in St. Louis