Computer Networking: Recent Developments, Trends, and Issues

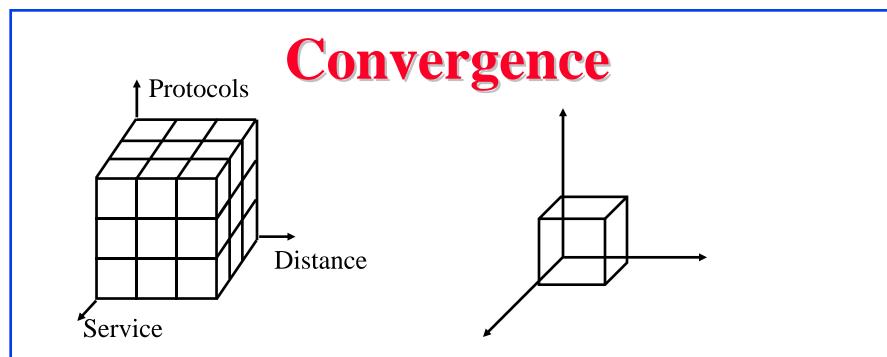
Professor Washington University St. Louis, MO 63130 Co-Founder and CTO Nayna Networks, Inc. San Jose, CA 95134

These Slides are available at

http:/www.cse.wustl.edu/~jain/talks/ieee0509.htm

Bird's Eye View of Networking

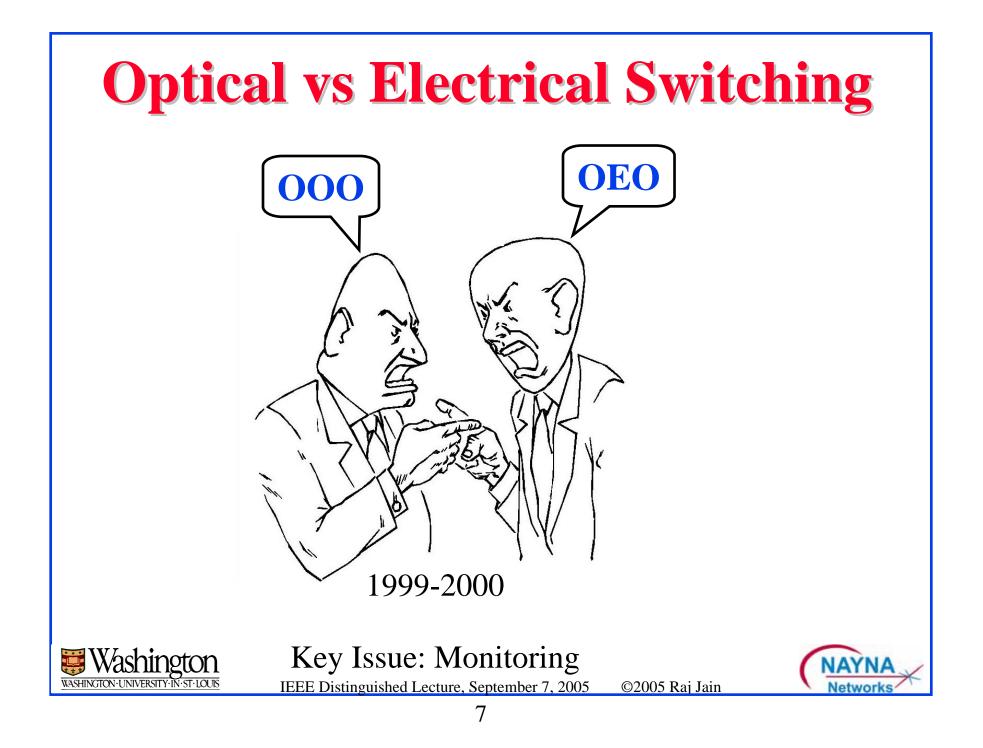
- 1. Industry Trends
 - 1. Top 10 Networking Developments of 2004
 - 2. Networking Technologies: Failures vs Successes
- 2. Research Trends:
 - 1. Top 5 Networking Research Topics

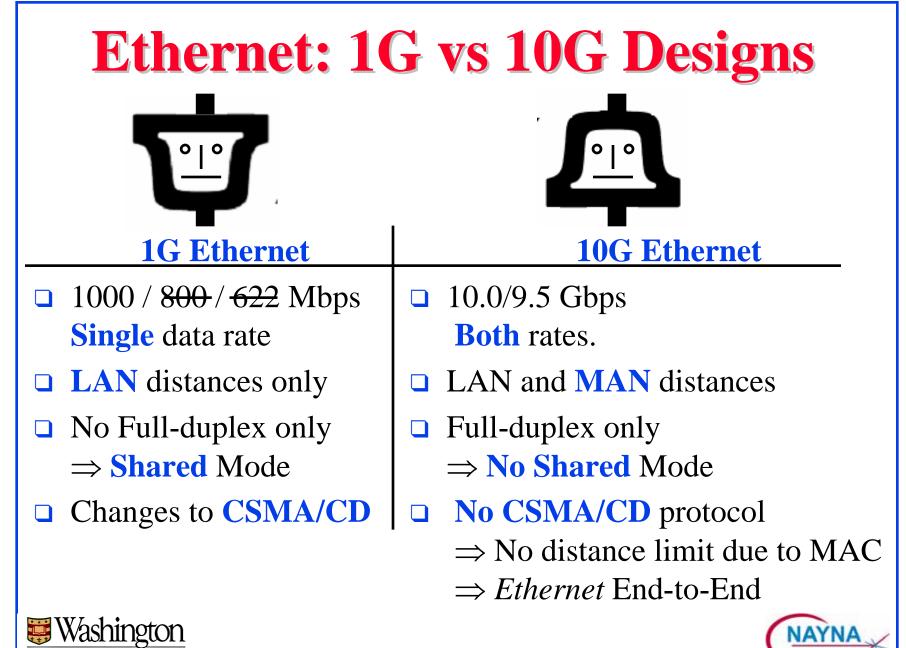


Top 10 Networking Developments of 2004

- Large investments in Security: Message Aware Networking ⇒ All messages scanned by security gateways
- 2. Wireless (WiFi) is spreading (Intel Centrino)
- 3. More Cell phones than POTS. Smart Cell phones w PDA, email, video, images ⇒ Mobility
- 4. Broadband Access is growing faster than cell phones Fiber is creeping towards home
- 5. Ethernet extending from Enterprise to Access to Metro ...
- 6. Wiring more expensive than equipment \Rightarrow Wireless Access
- 7. Multi-Protocol Label Switching for traffic engineering
- 8. Voice over Internet Protocol (VOIP) is in the Mainstream
- 9. Multi-service IP: Voice, Video, and Data
- 10. Terabyte/Petabyte storage (Not VoD) ⇒ High-Speed Networking Grid Storage. Desktop search.

- Distance: LAN vs MAN
- Services: Data, Voice, Video
- □ Phy: Circuit switched vs Packet switched
- □ L2 Protocols: Ethernet and SONET
- □ L3 Protocols: IP
- □ HTTP: Hyper-Application Access protocol




Core Networks

- □ Higher Speed/ λ : 10 Gbps to 40 Gbps to 160 Gbps
- Longer Distances/Regens: 600 km to 6000 km
- □ More Wavelengths: 16 λ 's to 160 λ 's
- □ 1 Fiber = 160 λ x 40 Gbps = 6.4 Tbps = 1 kbps x 6 Billion = 1 kbps/person

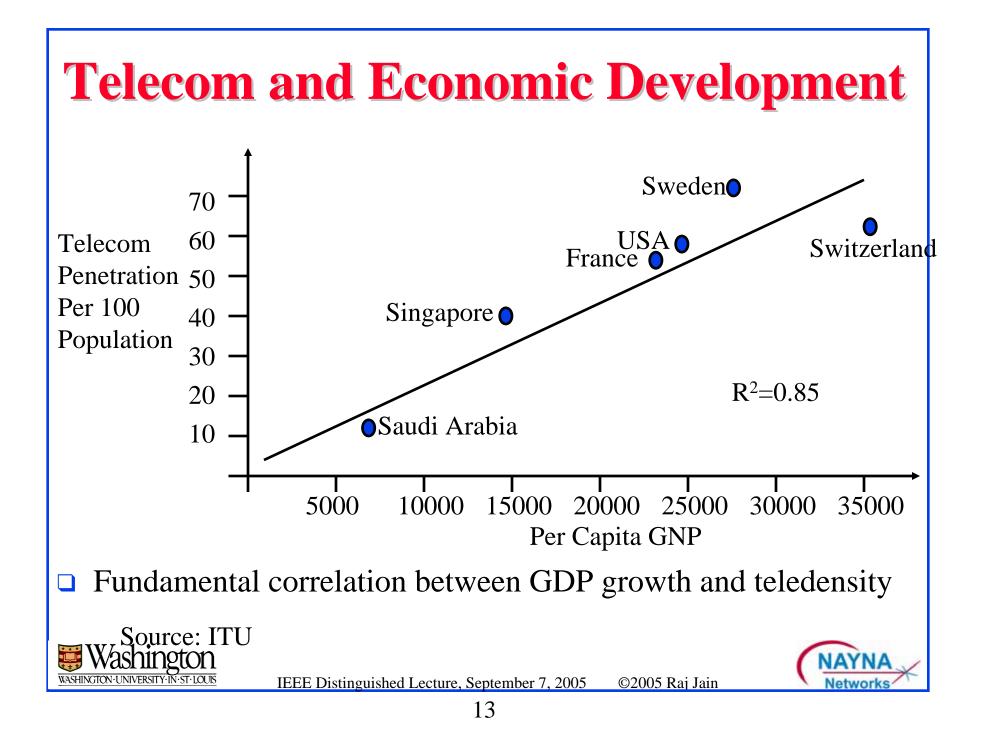
Solution 1: Fix the old house (cheaper initially) Solution 2: Buy a new house (pays off over a long run) Washington

Networking: Failures vs Successes

- □ 1980: Broadband (vs baseband) Ethernet
- □ 1984: ISDN (vs Modems)
- □ 1986: MAP/TOP (vs Ethernet)
- □ 1988: Open System Interconnection (OSI) vs TCP/IP
- □ 1991: Distributed Queue Dual Bus (DQDB)
- □ 1994: CMIP (vs SNMP)
- □ 1995: FDDI (vs Ethernet)
- □ 1996: 100BASE-VG or AnyLan (vs Ethernet)
- □ 1997: ATM to Desktop (vs Ethernet)
- □ 1998: Integrated Services (vs MPLS)
- □ 1999: Token Rings (vs Ethernet)

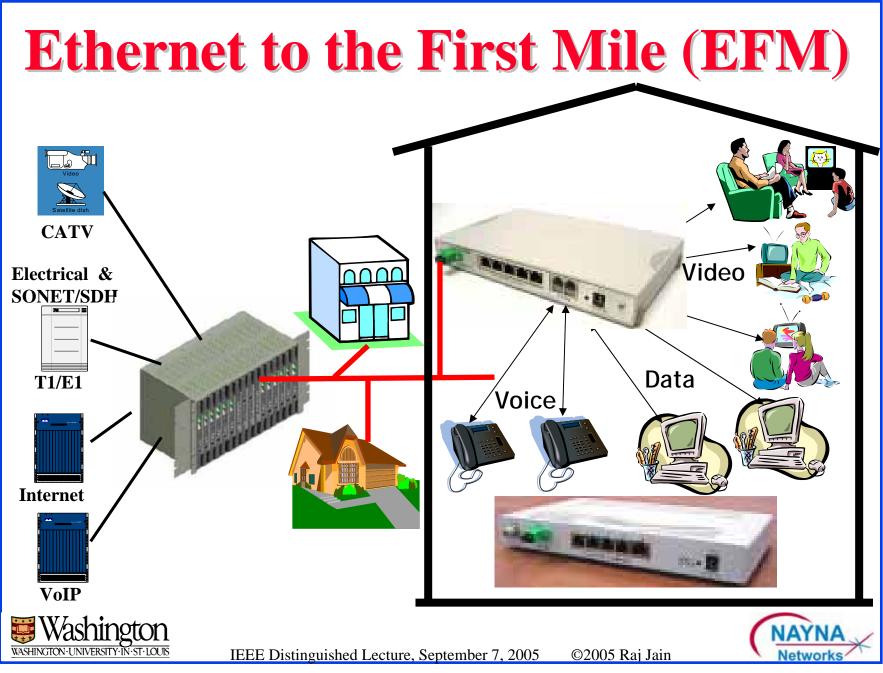
Requirements for Success

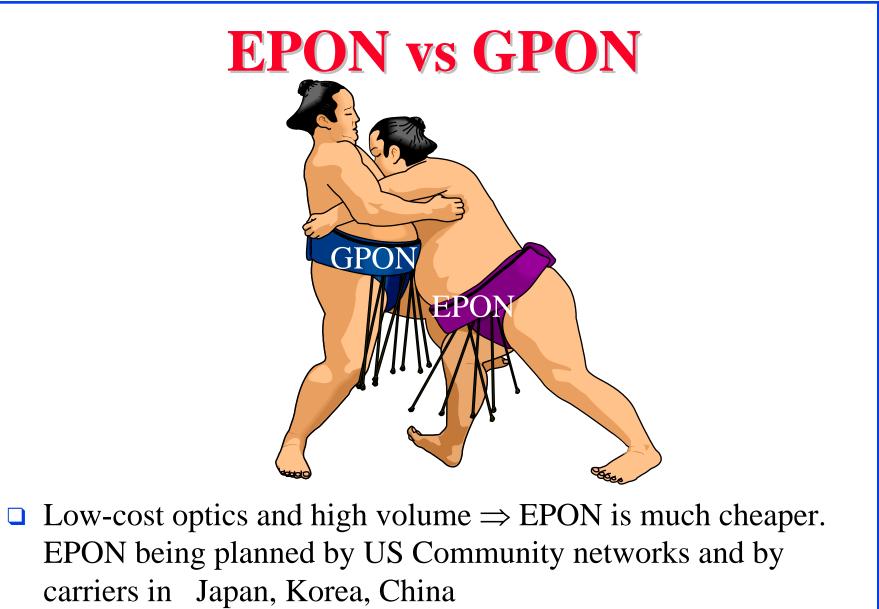
- □ Low Cost: Low startup cost \Rightarrow Evolution
- High Performance
- □ Killer Applications
- □ Timely completion
- Manageability
- □ Interoperability
- Coexistence with legacy networks
 Existing infrastructure is more important than new technology (IPv4 vs IPv6, Overcast vs IP multicast)



Laws of Networking Evolution

- 1. Existing infrastructure is more important then deploying new technology
 - □ Ethernet vs ATM, IP vs ATM
 - □ Exception: Killer technology, immediate savings
- 2. Modifying existing protocol is more acceptable than new protocols
 - □ TCP vs XTP
 - □ Exception: New applications (VOIP SIP, MEGACO, ...)
- 3. Traffic increases by a factor of X/year
 - Total revenue remains constant (or decreases)
 - \Rightarrow Price/bps goes down by \cong X/year (X = 2 to 4)


Access Networks


- □ 63.84 M DSL subscribers worldwide. 2003 growth rate of 77.8% is more than the peak growth rate of cellular phones.
- By Q3'04, 19M Cable Modems, 12M DSL in USA [Leichtman Research]
- All countries are racing to a leadership position in broadband
- □ Digital-Divide \Rightarrow 30M subs@10Mbps, 10M@100Mbps in Japan by 2005
- □ Telecom epicenter has moved from NA+Europe to Asia Pacific

Rank	Country	DSL per	Rank	Country	DSL per
		100 Phones			100 Phones
1	South Korea	28.3	6	Israel	14.5
2	Taiwan	19.8	7	Denmark	14.2
3	Belgium	16.7	8	Finland	13.6
4	Hong Kong	16.1	9	Singapore	13.4
5	Japan	15.7	10	France	12.1
			32	USA	5.6

IEEE Distinguished Lecture, September 7, 2005 ©2005 Raj Jain

Washington

Telecom Revenue

	2003	2004	2005	2006	2007	2008	Annual
							Growth
Video	0.2	0.3	.05	1.0	1.6	2.5	65.7%
Consumer Broadband	2.8	3.5	4.0	4.2	4.6	4.8	11.4%
Consumer long distance	20.7	18.2	16.0	13.6	11.3	9.2	-15.0%
Business local	26.3	26.7	26.4	26.1	25.8	25.5	-0.6%
Business long distance	26.1	24.5	23.0	21.3	19.7	18.2	-7.0%
Business data	44.8	45.6	46.6	47.1	46.8	45.4	0.3%
Consumer local	46.9	42.2	39.0	36.2	34.0	32.3	-7.25%
Wireless	91.5	108.7	119.2	132.8	144.5	153.6	10.9%
Total	260.7	271.5	277.0	285.0	291.3	294.9	2.5%

□ Long distance is disappearing.

- □ Most of the revenues are going to be from wireless.
- Source: Instat/MDR (Business Week, Feb 28, 2005)

Wireless Industry Trends

- Wireless industry is stronger than wireline.
 Particularly strong growth in developing countries.
- □ 48% of global telco revenues coming from wireless
- □ 26% of wireless revenues coming from data (vs voice)
- □ Past: Voice, email, SMS, Ring tones
- Present: Push, Gaming, Pictures, Instant Messaging
- Future: Music, Video, Location, Remote monitoring, mcommerce
- Long Term: Video telephony, remote enterprise applications, remote management, Multiparty collaboration,

- □ 13,000 Free WiFi access nodes and growing
- 12db to 12db can-to-can shot can carry an 11Mbps link well over ten miles

Wireless Issues

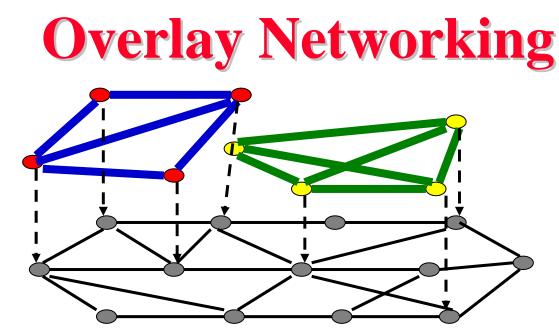
- Security (IEEE 802.11i)
- □ Higher Data Rates:
 - □ Ultra-wide band (vs Bluetooth)
 - □ Wireless USB
 - □ Multiple In Multiple Out (MIMO) antennas: IEEE 802.11n
- □ Longer distance (WiMAX, >1Mbps to 50 km)
- □ Seamless Networking \Rightarrow Handoff (IEEE 802.21)
- □ Mobility (IEEE 802.20)
- Multimedia over Wireless: Media center extenders, VOIP/Video over cell phones
- □ Channel congestion in license-exempt band

10 Challenges of Networking

- **1.** Size: 4 nodes \Rightarrow 100 M nodes \Rightarrow 4B people \Rightarrow 4T appliances
- 2. Distance: USA \Rightarrow Worldwide \Rightarrow Interplanetary \Rightarrow WAN \Rightarrow LAN \Rightarrow PAN
- **3.** Speed: 128 kbps \Rightarrow 10Mbps \Rightarrow 10Gbps \Rightarrow 1.6 Tbps
- 4. Criteria: Least cost \Rightarrow Policy based (Traffic Mgmt), Power
- **5. Traffic**: Delay-tolerant Data, real-time voice and video, storage and computing
- **6.** Trusted nodes \Rightarrow Secure, virus proof, spam proof, ...
- 7. Stationary Nodes \Rightarrow Mobile Nodes \Rightarrow Mobile Networks
- 8. Stable Links ⇒ Continuous **disruption**, long outages, Varying quality
- 9. Single ownership ⇒ Multiple Domains ⇒ Hierarchies of ownership
- **10. Heterogeneity**: Single technology \Rightarrow Multiple L1/L2/L3

Research Areas

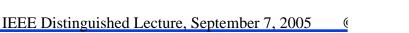
- **1. Disruption Tolerant Networking:**
 - Frequent Disconnection due to mobility, power outage, DTN nodes have limited storage
- 2. Overlay Networking: Virtual Networks, P2P, Application level optimization, multicasting, multimedia
- 3. Sensor Networks: Large scale, Energy efficient
- **4. Distributed Computing Networks** (Grids): Grid computing, Grid Storage
- 5. Security: Firewalls, key management, attacks



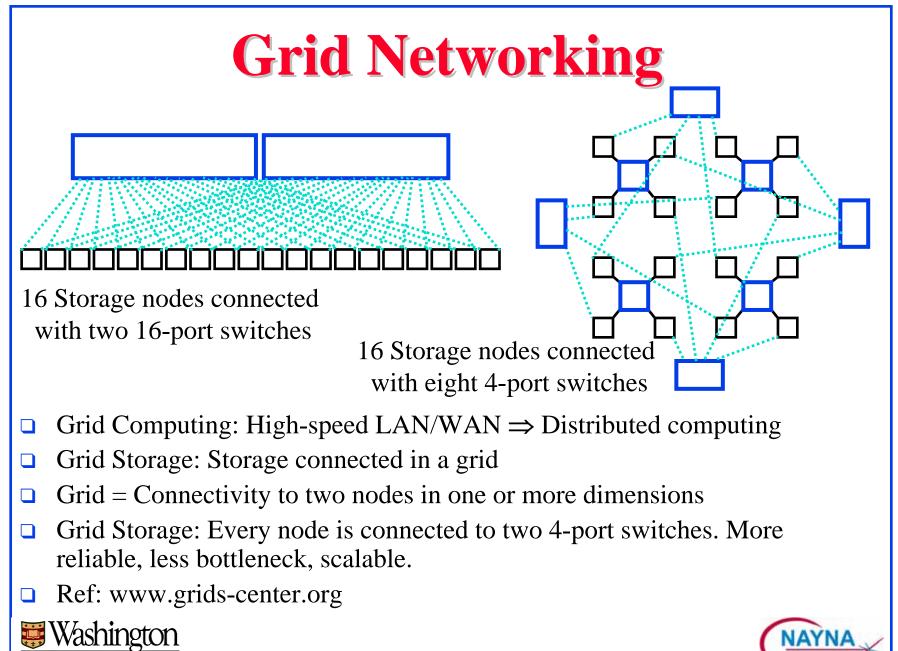
Disruption Tolerant Networking

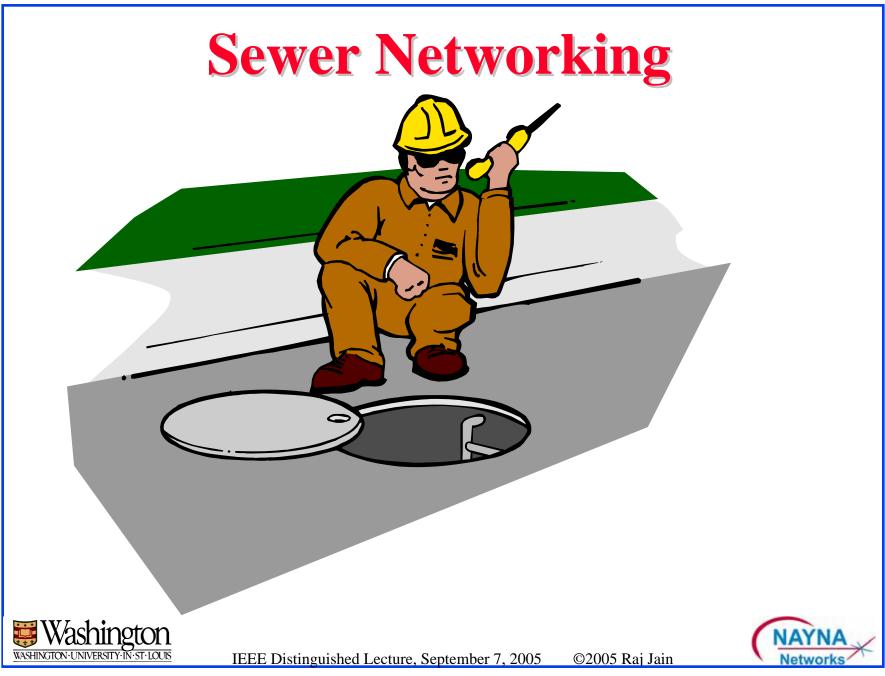
- Frequent Disconnection due to mobility, power outage (Military Ad hoc networks)
- □ Regular or unpredictable disconnections (LEO satellites)
- Very high delay networks (Inter-planetary networks)
- Aka Delay Tolerant/Difficult/challenged/disconnected/ Intermittent networks
- DTN routers need storage but not unlimited
- **End-to-end retransmissions not desirable**
- Congestion management in DTNs
- Path selection and scheduling in DTNs
- □ Ref: DTN IRTF

- Networking over Networking
 - □ Heterogeneity: Multiple L1/L2/L3 technologies
 - Scalability: Multiple Domains
 - Performance: Application level optimization
- Peer-to-peer networking, Video Overcasting,
- Issues: QoS, Routing, multicast, anycast, Secure communication over insecure net

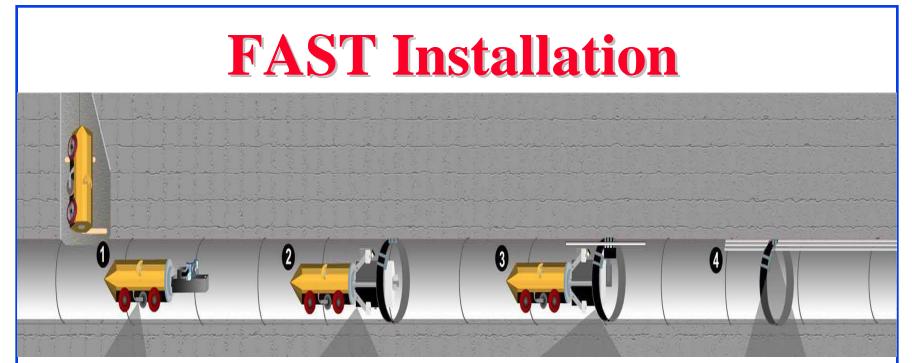


Sensor Networks


- A large number of low-cost, low-power, multifunctional, and small sensor nodes consisting of sensing, data processing, and communicating components
- □ Key Issues:
 - 1. Scalability
 - 2. Power consumption
 - 3. Fault tolerance
 - 4. Network topology
 - 5. Transmission media
 - 6. Cost

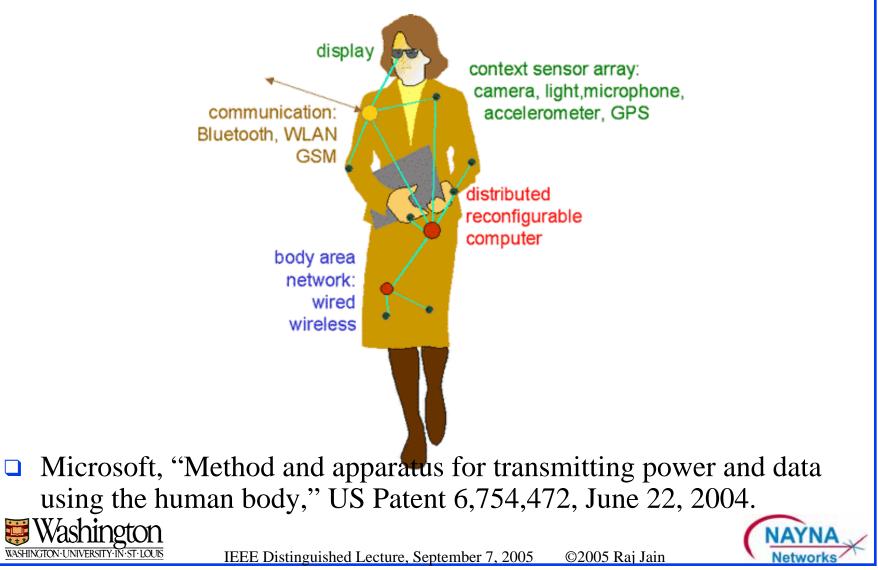

/ashington

- 7. Operating environment
- 8. Hardware constraints


Internet Task Sink Manager Sensor Field ain

Fiber Access Thru Sewer Tubes (FAST)

- □ Right of ways is difficult in dense urban areas
- Sewer Network: Completely connected system of pipes connecting every home and office
- Municipal Governments find it easier and more profitable to let you use sewer than dig street
- Installed in Zurich, Omaha, Albuquerque, Indianapolis, Vienna, Ft Worth, Scottsdale, ...
- Corrosion resistant inner ducts containing up to 216 fibers are mounted within sewer pipe using a robot called Sewer Access Module (SAM)
- □ Ref: <u>http://www.citynettelecom.com</u>, NFOEC 2001, pp. 331 Washington WASHINGTON-UNIVERSITY-IN-ST-LOUR IEEE Distinguished Lecture, September 7, 2005 Raj Jain


- 1. Robots map the pipe
- 2. Install rings
- 3. Install ducts
- 4. Thread fibers

Fast Restoration: Broken sewer pipes replaced with minimal disruption

Body Area Networks (BANs)

Summary

- 1. Networking is infrastructure and is now widely deployed. Evolution is more like to succeed than revolution.
- Growing research opportunities in networking. Research areas and types of solutions required are different. All basic assumptions are being changed.
- 3. Wireless is where the action is. MIMO is in. CSMA/CD is out. L1:Wireless, L5-L7:Applications, L2-L4: Large scale
- 4. Key issues in Wireless are: Security, Mobility, and high-speed

Networking Trends: References

- References on Networking Trends, <u>http://www.cse.wustl.edu/~jain/refs/ref_trnd.htm</u>
- References on Optical Networking, <u>http://www.cse.wustl.edu/~jain/refs/opt_refs.htm</u>
- References on Residential Broadband, <u>http://www.cse.wustl.edu/~jain/refs/rbb_refs.htm</u>
- References on Wireless Networking, <u>http://www.cse.wustl.edu/~jain/refs/wir_refs.htm</u>

