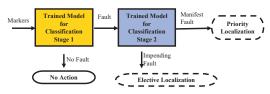
Fault and Performance Management in Multi-Cloud Based NFV using Shallow and Deep Predictive Structures



Lav Gupta, Mohammed Samaka, Raj Jain, Aiman Erbad, Deval Bhamare, and H. Anthony Chan iain@wustl.edu

Paper presentation at 7th Workshop on Industrial Internet of Things Communication Networks – (IioTCom) at ICCCN 2017, Vancouver, Canada, August 3, 2017

These slides and a recording of this presentation are at: http://www.cse.wustl.edu/~jain/talks/jcccn17p.htm

Washington University in St. Louis

/ww.cse.wustl.edu/~jain/talks/icccn17p.ht

@2017 Pai Jai

- 1. Network Function Virtualization (NFV)
- 2. NFV on multiple clouds
- 3. Gaps in Fault, Configuration, Accounting, Performance and Security (FCAPS)
- 4. Fault detection using Shallow Learning
- 5. Fault location using Deep Learning

Washington University in St. Louis

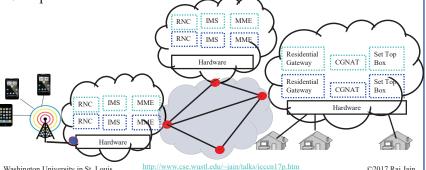
http://www.cse.wustl.edu/~jain/talks/icccn17p.ht

©2017 Rai Jain

1

Network Function Virtualization

- Standard hardware is fast and cheap⇒ No need for specialized hardware
- □ Implement all functions in software
- □ Virtualize all functions ⇒ Create capacity on demand
- ⇒ Implement all carrier functions in a cloud



Advantages of NFV

- □ Reduces time to market new services
- □ Provides flexibility of scaling
- □ Lowers capital and operational costs

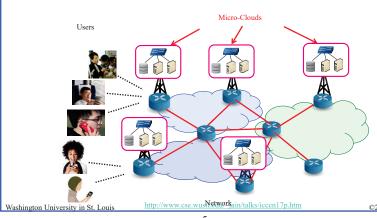
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jai

Trend: Computation in the Edge

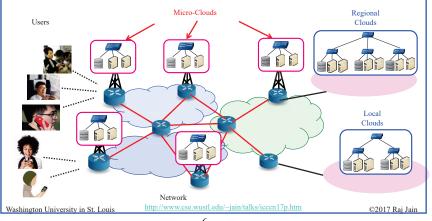
□ To service mobile users/IoT, the computation needs to come to edge ⇒ Mobile Edge Computing



5

Trend: Multi-Cloud

□ Larger and infrequent jobs serviced by local and regional clouds



O

Advantages of NFV on Multi-Cloud

- Wider footprint for distributed services.
- □ Lower risk of total failure.

Issues in Multi-Cloud NFV Deployments

- □ Cloud downtime higher than five nines requirement of NFV (99.999% \Rightarrow 3 min 15sec downtime in 1yr).
- ☐ Higher complexity of virtual environments
- □ FCAPS framework is weak compared to traditional carrier networks.
- □ Not yet carrier grade
- □ In this paper we deal primarily with the <u>FCP</u> part of FCAPS.
- ☐ From now on: Fault = Faults and Performance Issues

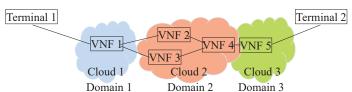
hington University in St. Louis http://www.cse.wustl.edu/~jain/talks/icccn17

Raj Jain Washington University

http://www.cse.wustl.edu/~iain/talks/icccn17p.htm

©2017 Raj Jai

Network Services (NS)



- □ **Network Service**: An ordered set of virtual network functions (VNFs), e.g., IMS, Mobility Management Entity (MME), ...
- □ VNFs are chained into **service function chains (SFC)** or VNF graphs
- Multiple levels of management
 - > VNFs by NFV-MANO (Management and Orchestration)
 - Virtual Machines (VMs) by Multi-cloud Management and Control Platform (MMCP)
 - > Network services by BSS/OSS (Business and Operation Support Systems) of the carrier.

Washington University in St. Loui

ese.wusti.edu/~jain/taiks/icccn1/p.nt

©2017 Rai Jai

9

FCP Problem Description

- 1. Study of *markers* and *metrics*
- 2. **Detection**: of manifest and impending faults and that could cause performance degradation or failure.
- 3. **Localization**: of manifest and impending faults and performance issues.
- 4. **Severity**: In case of impending faults severity level should be predicted.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Rai Iair

10

Markers and Metrics

■ Markers: Alarms, notifications, warning or error messages, measurements and counter values.

Mobile Network	Fixed Network	Broadband	
Radio Link Time Out	No Dial Tone	Intermittent Connection	
Time Slot Shortage	Line Cart Port Faulty	Repeated Training	

□ Metrics: Performance Measures

CDR	CSSR (call set up	SDCCH	TCH	Packet loss	
(call drop rate)	success rate)	congestion	Congestion	Packet loss	
≤ 2%	≥95%	≤1%	≤2%	≤ 1%	
SDCCH: Standalone Dedicated Control Channel: TCH: Traffic Channel					

©2017 Raj Jain

Description of Training Datasets

The Telstra Dataset (2016) [1]

- □ The Telstra datasets (2016) are derived from the fault log files containing real customer faults
- □ Table 1: Training dataset containing location and severity of faults (0 indicating no fault, 1 indicating a few faults and 2 indicating many faults.). These are identified by the "id" key.
- □ Table 2: Test dataset for prediction of fault severity
- □ Table 3: Event type gives the type of fault
- □ Table 4: Resource involved in the fault
- □ Table 5: Severity type gives warning given by the system
- Table 6: Feature dataset contains various markers

Ref: Kaggle datasets, https://www.kaggle.com/datasets

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/icccn17p.h

©2017 Raj Jai

Telstra Dataset Samples

			2 Test dataset 71 examples)		Table 3 Event type dataset (31170 records)		dataset		
		fault_	i	d	location		id	event_typ	
id	location	severity		11066	location 481			event_typ	
14121	location 118	1		18000	location 962			event_typ	
	location 91	0		16964	location 491			event_typ	
	location 152	1		4795	location 532			event_typ	
	location 931	1		3392	location 600			event_typ	
	location 120	0	l ⊩		location 794			event_typ	
	location 664	0	l ⊩		location 375			event_typ	
	location 640	0	l ⊩		location 638			event_typ	
	location 122 location 263	0	l ⊩		location 690			event_typ	
	location 263	1	l ⊩		location 893		14838	event_typ	e 11
	esource typ 1076 recor			Table 5 Severity type (18552 records)			Table 6 Feature dataset (58671 records)		
d r	esource_type	2		id s	everity_type	Н	id	iog_feature	volume
6597 r	esource_type	2 8			everity_type 2			feature 68	6
8011 r	esource_type	2 8		8011 s	everity_type 2		8011	feature 68	7
2597 r	esource_type	2 8			everity_type 2		2597	feature 68	1
	esource_type				everity_type 1			feature 172	2 1
	esource_type				everity_type 1			feature 56	
	esource_type				everity_type 2			feature 193	4
	esource_type				everity_type 1			feature 71	3
2588 r	esource_type	2 8			everity_type 1			feature 201	2
4848 r	esource_type	8 =			everity_type 1			feature 56	1
6914 r	esource type	- 8		6914 s	everity type 1		6852	feature 80	2

KDE dataset

- ☐ This is a synthetic dataset generated through multivariate kernel density estimation (KDE) technique [2]
- Some of the features and classes are shown in the table

	Features		Classes
1	BTS hardware	1	Call drop
2	Radio link phase	2	Call setup
3	Antenna tilt	3	No Roaming
4	C/I ratio	4	Weak Signal
5	TCH congestion	5	No registration
6	BCC fault	6	No outgoing
7	Time slot short	7	Data not working
8	Rx Noise		

chington University in St. Louis http://www.cse.wustl.ed

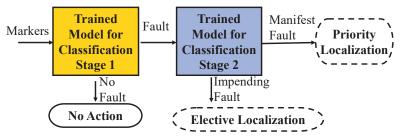
@2017 Doi: Id

14

Fault Detection

13

- □ Goal: Correlate markers to infer *manifest* or to predict *impending* performance and fault conditions.
- □ Two stage machine learning model:



☐ Minor faults and warnings are the main contributors to the impending faults and need to be analyzed.

/ashington University in St. Louis http://www.cse.wustl.edu/~jain/talks/icccn17p.ht

©2017 Raj Jain

Detection of Faults and Performance Problems

- □ 'Fault', "No Fault' binary classification tested with Support Vector Machine (SVM), Alternating Decision Trees (ADT) and Random Forests (RF)
- □ Each of the models was trained with 240 examples and 10% cross-validation.
- □ SVM had highest accuracy and precision, high true positive (TP) rate for class 1 (fault cases)

	SVM	ADT	Random Forests
Correctly classified instances	95.42%	95.00%	86.67%
Precision (Average)	95.7%	95.2%	86.9%
Mean absolute error	0.0458	0.0859	0.2509
True positive for class 1	97.6%	96.4%	69.9%
False positive for class 0	2.4%	3.6%	30.1%

ashington University in St. Louis http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Ja

15

Detection (cont.)

- ☐ The second model was trained to classify fault as *manifest* or *impending*.
- □ Prediction rate was 100% with SVM in test set for predicting impending faults from warning cases.
- □ Comparison with other works:
 - > In [3] the authors used SVM to classify wind turbine faults using operational data and achieved 99.6% accuracy.
 - > In [4] wind turbine faults were detected with accuracy 98.26% for linear SVM and 97.35 for Gaussian.
 - > In [5] authors achieved 99.9% accuracy of classification of faults in rotating machinery with SVM.

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jain

17

Localization of Faults

☐ Two layered machine learning model for localizing manifest faults:

Manifest fault Category

Markers

Layer 1
Broad
Categorization

Fault Category

Category

Layer 2
Fine Grain
Localization

Maintenance
Work order

□ Deep learning (Stacked Autoencoder) for impending faults:

Impending SAE Severity and Location Horacles Markers

- □ Reasons:
 - Automatic selection of features from high dimensional data
 - Filtering information through the layers for better accuracy
 - Gives improved results in other areas

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn1/p.htn

©2017 Rai Jair

18

Localization of Faults and Performance Problems

□ Telstra dataset was adapted for evaluation

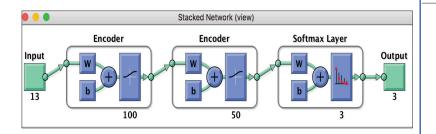
1	Id	5	Resource type 1 to 10
2	Location	6	Severity type 1 to 5
3	Features 1 to 386	7	Event type
4	Volumes for features	8	Fault severity level

- □ Fault severity level classes: No fault (0), a few faults (1) and many faults (2) and are based on actual faults reported by users
- Severity Type: Intensity of the warning predicts impending faults

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jain

Stacked Autoencoder



- □ 100 Hidden layers in the first encoder
- □ 50 Hidden layers in the 2nd encoder
- □ Softmax layer provides supervised back-propagation improvement of the weights learned during unsupervised training.

Washington University in St. Louis

p://www.cse.wustl.edu/~iain/talks/icccn17p.ht

©2017 Raj Jai

19

20

Confusion Matrix

	W/O Sparsity Regularization					
1 8	12	0	0	100%		
	44.4%	0%	0%	0%		
Output Class	1	7	0	87.5%		
	3.7%	25.9%	0%	12.5%		
o 3	0	0	7	100%		
	0%	0%	25.9%	0%		
	92.3%	100%	100%	96.3%		
	7.7%	0%	0%	3.7%		

Target Class

 $\rho = 0.05$, $\beta = 1$, Accuracy = 96.3%

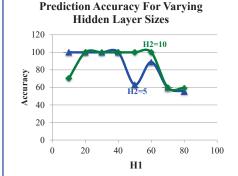
W Sparsity Regularization 100% 0% 0% 48.1% 0% Output Class 100% 25.9% 0% 0% 0% 100% 0% 0% 25.9% 0% 100% 100% 100% 100% 0% 0% 0% 0%

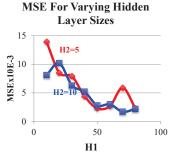
> 2 3 Target Class

 $\rho=0.1, \beta=4, Accuracy=100\%$

- Confusion matrix shows how many are correctly and incorrectly classified.
- A well tuned model give 100% accuracy. This is good compared to deep learning model for HVAC where accuracy is reported as $\geq 95\%$ [6].

Effect of Relative Sizes of Hidden Layers





- H1=Size of hidden layer 1, H2=Size of hidden layer 2
- □ Accuracy and MSE are good for certain ranges of H1 and H2

22

Washington University in St. Louis

21

Summary

- ☐ Handling fault and performance anomalies is crucial for the success of NFV deployments over clouds.
- □ A combination of shallow and deep learning structures works well for detection and localization of manifest and impending fault and performance issues.
- Evaluation has been done using real and synthetic datasets and results are comparable to or better than fault detection and localization in other areas.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Rai Jair

References

- Kaggle datasets, https://www.kaggle.com/datasets
- Z. Botev, "Fast multivariate kernel density estimation for high dimensions," 2016
- K. Leahy, R. L. Hu, I. C. Konstantakopoulos, C. J. Spanos, A. M. Agogino,"Diagnosing wind turbine faults using machine learning techniques applied to operational data," International Conference on Prognostics and Health Management (ICPHM), 2016
- P. Santos, L. F. Villa, A. Reñones, A. Bustillo, J. Maudes, "An SVM-Based Solution for Fault Detection in Wind Turbines," Sensors, 2015
- G. Nicchiotti, L. Fromaigeat, L. Etienne, "Machine Learning Strategy for Fault Classification Using Only Nominal Data," European Conference Of The Prognostics And Health Management Society, 2016
- D. Lee, B. Lee, J. W. Shin, "Fault Detection and Diagnosis with Modelica Language using Deep Belief Network," Proceedings of the 11th International Modelica Conference, 2015

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jaj

