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Overview 

1. Network Function Virtualization (NFV)  
2. NFV on multiple clouds 
3. Gaps in Fault, Configuration, Accounting, 

Performance and Security (FCAPS) 
4. Fault detection using Shallow Learning 
5. Fault location using Deep Learning 
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Network Function Virtualization 
 Standard hardware is fast and cheap  

⇒ No need for specialized hardware 
 Implement all functions in software 
 Virtualize all functions ⇒ Create capacity on demand 
⇒ Implement all carrier functions in a cloud 
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Advantages of NFV 

 Reduces time to market new services 
 Provides flexibility of scaling 
 Lowers capital and operational costs 
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Users 

Network 

Micro-Clouds 

Trend: Computation in the Edge 

 To service mobile users/IoT, the computation needs to 
come to edge ⇒ Mobile Edge Computing 
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Trend: Multi-Cloud 

 Larger and infrequent jobs serviced by local and 
regional clouds 
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Advantages of NFV on Multi-Cloud 

 Wider footprint for distributed services. 
 Lower risk of total failure. 
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Issues in Multi-Cloud NFV Deployments 

 Cloud downtime higher than five nines requirement of 
NFV (99.999% ⇒ 3 min 15sec downtime in 1yr). 

 Higher complexity of virtual environments 
 FCAPS framework is weak compared to traditional 

carrier networks. 
 Not yet carrier grade  
 In this paper we deal primarily with the FCP part of 

FCAPS.  
 From now on: Fault = Faults and Performance Issues 
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Cloud 3 Cloud 2 

Network Services (NS) 

 Network Service: An ordered set of virtual network functions 
(VNFs), e.g., IMS, Mobility Management Entity (MME), … 

 VNFs are chained into service function chains (SFC) or VNF 
graphs  

 Multiple levels of management 
 VNFs by NFV-MANO (Management and Orchestration)  
 Virtual Machines (VMs) by Multi-cloud Management and 

Control Platform (MMCP)  
 Network services by BSS/OSS (Business and Operation 

Support Systems) of the carrier. 

Cloud 1 

VNF 1 
VNF 2 

VNF 3 
VNF 4 VNF 5 

Terminal 1 Terminal 2 

Domain 2 Domain 1 Domain 3 

http://www.cse.wustl.edu/%7Ejain/talks/icccn17p.htm


10 
©2017 Raj Jain http://www.cse.wustl.edu/~jain/talks/icccn17p.htm  

  
Washington University in St. Louis 

FCP Problem Description 

1. Study of markers and metrics  

2. Detection: of manifest and impending faults and that 
could cause performance degradation or failure.  

3. Localization: of manifest and impending faults and 
performance issues.  

4. Severity: In case of impending faults severity level 
should be predicted. 

http://www.cse.wustl.edu/%7Ejain/talks/icccn17p.htm


11 
©2017 Raj Jain http://www.cse.wustl.edu/~jain/talks/icccn17p.htm  

  
Washington University in St. Louis 

Markers and Metrics 

 Markers: Alarms, notifications, warning or error 
messages, measurements and counter values. 
 

 
 
 

 Metrics: Performance Measures 
CDR  

(call drop rate) 
CSSR (call set up 

success rate) 
SDCCH 

congestion 
TCH 

Congestion Packet loss 

≤ 2% ≥95% ≤ 1% ≤2% ≤ 1% 
SDCCH: Standalone Dedicated Control Channel; TCH: Traffic Channel 

Mobile Network Fixed Network Broadband 

Radio Link Time Out No Dial Tone Intermittent Connection 

Time Slot Shortage Line Cart Port Faulty Repeated Training 
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Description of Training Datasets 

The Telstra Dataset (2016) [1] 
 The Telstra datasets (2016) are derived from the fault log files 
containing real customer faults  
 Table 1: Training dataset containing location and severity of 
faults (0 indicating no fault, 1 indicating a few faults and 2 
indicating many faults.). These are identified by the “id” key.  
 Table 2: Test dataset for prediction of fault severity 
 Table 3: Event type gives the type of fault 
 Table 4: Resource involved in the fault 
 Table 5: Severity type gives warning given by the system 
 Table 6: Feature dataset contains various markers 

Ref: Kaggle datasets, https://www.kaggle.com/datasets  
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Telstra Dataset Samples 
Table 1 Training Dataset 
(7381 examples) 

Table 2 Test dataset 
(11171 examples) 

Table 3 Event type dataset 
(31170 records) 

Table 4 Resource type 
dataset (21076 records) 

Table 5 Severity type 
(18552 records) 

Table 6 Feature dataset 
(58671 records) 
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KDE dataset 

 This is a synthetic dataset generated through multivariate 
kernel density estimation (KDE) technique [2] 

 Some of the features and classes are shown in the table 

  Features   Classes 
1 BTS hardware 1 Call drop 

2 Radio link 
phase 

2 Call setup 

3 Antenna tilt 3 No Roaming 
4 C/I ratio 4 Weak Signal 
5 TCH 

congestion 
5 No registration 

6 BCC fault 6 No outgoing 
7 Time slot short 7 Data not working 

8 Rx Noise 
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Fault Detection  

 Goal: Correlate markers to infer manifest or to predict 
impending performance and fault conditions. 

 Two stage machine learning model: 
 Trained 

Model for  
Classification 

Stage 1 

Trained 
Model for  

Classification 
Stage 2 
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No 
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No Action 

Manifest 
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Priority 
Localization 
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 Minor faults and warnings are the main contributors 
to the impending faults and need to be analyzed. 
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Detection of Faults and Performance Problems 

  SVM ADT Random Forests 

Correctly classified 
instances 

95.42% 95.00% 86.67% 

Precision (Average) 95.7% 95.2% 86.9% 

Mean absolute error 0.0458 0.0859 0.2509 

True positive for 
class 1 

97.6% 96.4% 69.9% 

False positive for 
class 0 

2.4% 3.6% 30.1% 

 ‘Fault’, “No Fault’ binary classification tested with Support 
Vector Machine (SVM), Alternating Decision Trees (ADT) 
and Random Forests (RF)  

 Each of the models was trained with 240 examples and 10% 
cross-validation.  

 SVM had highest accuracy and precision, high true positive 
(TP) rate for class 1 (fault cases) 
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Detection (cont.) 
 The second model was trained to classify fault as manifest or 

impending. 
 Prediction rate was 100% with SVM in test set for predicting 

impending faults from warning cases. 
 Comparison with other works: 

 In [3] the authors used SVM to classify wind turbine faults 
using operational data and achieved 99.6% accuracy. 

 In [4] wind turbine faults were detected with accuracy 
98.26% for linear SVM and 97.35 for Gaussian.   

 In [5] authors achieved 99.9% accuracy of classification of 
faults in rotating machinery with SVM. 
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Localization of Faults 
 Two layered machine learning model for localizing manifest 

faults: 
 

 
 Deep learning (Stacked Autoencoder) for impending faults: 

 
 
 

 Reasons: 
- Automatic selection of features from high dimensional data 
- Filtering information through the layers for better accuracy 
- Gives improved results in other areas 
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Localization of Faults and Performance Problems 

 Telstra dataset was adapted for evaluation 
 
 
 
 

 
 Fault severity level classes: No fault (0), a few faults (1) and 

many faults (2) and are based on actual faults reported by users 
 Severity Type: Intensity of the warning – predicts impending 

faults 
 

1 Id 5 Resource type 1 to 10 

2 Location 6 Severity type 1 to 5 

3 Features 1 to 386 7 Event type 

4 Volumes for features 8 Fault severity level 
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Stacked Autoencoder 

 100 Hidden layers in the first encoder 
 50 Hidden layers in the 2nd encoder 
 Softmax layer provides supervised back-propagation 

improvement of the weights learned during unsupervised 
training. 
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Confusion Matrix 

 Confusion matrix shows how many are correctly and incorrectly classified. 
 A well tuned model give 100% accuracy. This is good compared to deep 

learning model for HVAC where accuracy is reported as ≥ 95% [6]. 
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Effect of Relative Sizes of Hidden Layers 

 H1=Size of hidden layer 1, H2=Size of hidden layer 2 
 Accuracy and MSE are good for certain ranges of H1 and H2 
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Summary 

 Handling fault and performance anomalies is crucial 
for the success of NFV deployments over clouds.  

 A combination of shallow and deep learning 
structures works well for detection and localization of 
manifest and impending fault and performance issues.  

 Evaluation has been done using real and synthetic 
datasets and results are comparable to or better than 
fault detection and localization in other areas. 
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