Fault and Performance Management in Multi-Cloud Based NFV using Shallow and Deep Predictive Structures

Lav Gupta, Mohammed Samaka, Raj Jain, Aiman Erbad, Deval Bhamare, and H. Anthony Chan jain@wustl.edu

Paper presentation at 7th Workshop on Industrial Internet of Things Communication Networks – (IioTCom) at ICCCN 2017, Vancouver, Canada, August 3, 2017

These slides and a recording of this presentation are at: <u>http://www.cse.wustl.edu/~jain/talks/icccn17p.htm</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jain

- 1. Network Function Virtualization (NFV)
- 2. NFV on multiple clouds
- 3. Gaps in Fault, Configuration, Accounting, Performance and Security (FCAPS)
- 4. Fault detection using Shallow Learning
- 5. Fault location using Deep Learning

Washington University in St. Louis

Network Function Virtualization

- ❑ Standard hardware is fast and cheap
 ⇒ No need for specialized hardware
- □ Implement all functions in software
- $\Box \quad Virtualize all functions \Rightarrow Create capacity on demand$
- \Rightarrow Implement all carrier functions in a cloud

Advantages of NFV

- □ Reduces time to market new services
- Provides flexibility of scaling
- Lowers capital and operational costs

Trend: Computation in the Edge

□ To service mobile users/IoT, the computation needs to come to edge ⇒ Mobile Edge Computing

Trend: Multi-Cloud

Larger and infrequent jobs serviced by local and regional clouds

Advantages of NFV on Multi-Cloud

- □ Wider footprint for distributed services.
- Lower risk of total failure.

Issues in Multi-Cloud NFV Deployments

- □ Cloud downtime higher than five nines requirement of NFV (99.999% ⇒ 3 min 15sec downtime in 1yr).
- □ Higher complexity of virtual environments
- FCAPS framework is weak compared to traditional carrier networks.
- □ Not yet carrier grade
- □ In this paper we deal primarily with the <u>FCP</u> part of FCAPS.
- □ From now on: Fault = Faults and Performance Issues

Washington University in St. Louis

FCP Problem Description

- 1. Study of *markers* and *metrics*
- 2. **Detection**: of manifest and impending faults and that could cause performance degradation or failure.
- 3. Localization: of manifest and impending faults and performance issues.
- 4. Severity: In case of impending faults severity level should be predicted.

Markers and Metrics

□ Markers: Alarms, notifications, warning or error messages, measurements and counter values.

Mobile Network	Fixed Network	Broadband	
Radio Link Time Out	No Dial Tone	Intermittent Connection	
Time Slot Shortage	Line Cart Port Faulty	Repeated Training	

□ Metrics: Performance Measures

CDR	CSSR (call set up	SDCCH	TCH	Dealest loss		
(call drop rate)	success rate)	congestion	Congestion	Packet 1088		
$\leq 2\%$	≥95%	$\leq 1\%$	≤2%	$\leq 1\%$		
SDCCH: Standalone Dedicated Control Channel; TCH: Traffic Channel						

Washington University in St. Louis

Description of Training Datasets

The Telstra Dataset (2016) [1]

□ The Telstra datasets (2016) are derived from the fault log files containing real customer faults

□ Table 1: Training dataset containing location and severity of faults (0 indicating no fault, 1 indicating a few faults and 2 indicating many faults.). These are identified by the "id" key.

- □ Table 2: Test dataset for prediction of fault severity
- □ Table 3: Event type gives the type of fault
- □ Table 4: Resource involved in the fault
- □ Table 5: Severity type gives warning given by the system
- □ Table 6: Feature dataset contains various markers

Telstra Dataset Samples

Table 1 Trainin (7381 example	g Dataset s)	Table 2 Test dataset(11171 examples)		Table 3 Event ty(31170 records)		Event type records)	dataset	
id location 14121 location 9320 location 14394 location 8218 location 14804 location 14804 location 9731 location 15505 location	fault_ on severity on 118 1 on 91 0 on 152 1 on 931 1 on 120 0 on 664 0 on 122 0		id 11066 18000 16964 4795 3392 3392 3795 2881 1903	location location 481 location 962 location 491 location 532 location 600 location 794 location 375 location 638		id 6597 8011 2597 5022 5022 6852 6852 6852 5611 14838	event_type event_type event_type event_type event_type event_type event_type event_type event_type event_type event_type	e e 11 e 15 e 15 e 15 e 11 e 11 e 15 e 15
3443 locatio	on 263 1 on 613 1		5245 6726	location 690 location 893		14838	event_type	e 11
Table 4 Resource typeTable 5 Severity typedataset (21076 records)(18552 records)			Table 6 (58671)	Feature data records)	aset			
id resourc	e_type		id s	everity_type		id	log_feature	volume
6597 resourc	e type 8		6597 s	everity_type 2		6597	feature 68	6
8011 resource	e_type 8		8011 s	everity_type 2		8011	feature 68	7
2597 resource	e_type 8		2597 s	everity_type 2		2597	feature 68	1
5022 resource	e_type 8		5022 s	everity_type 1		5022	feature 172	2
6852 resourc	e_type 8		6852 severity_type 1			5022	feature 56	1
5611 resourc	e_type 8		5611 s	everity_type 2		5022	feature 193	4
14838 resource	e_type 8		14838 s	everity_type 1		5022	feature 71	3
2588 resource	e_type 8		2588 severity_type 1			6852	feature 201	2
4848 resource	e_type 8		4848 severity_type 1			6852	feature 56	1
6914 resourc	e_type 8		6914 s	everity_type 1		6852	feature 80	2

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jain

KDE dataset

- This is a synthetic dataset generated through multivariate kernel density estimation (KDE) technique [2]
- □ Some of the features and classes are shown in the table

	Features		Classes
1	BTS hardware	1	Call drop
2	Radio link phase	2	Call setup
3	Antenna tilt	3	No Roaming
4	C/I ratio	4	Weak Signal
5	TCH congestion	5	No registration
6	BCC fault	6	No outgoing
7	Time slot short	7	Data not working
8	Rx Noise		

Washington University in St. Louis

Fault Detection

Goal: Correlate markers to infer *manifest* or to predict *impending* performance and fault conditions.

Two stage machine learning model:

Minor faults and warnings are the main contributors to the impending faults and need to be analyzed.

Washington University in St. Louis

Detection of Faults and Performance Problems

- 'Fault', "No Fault' binary classification tested with Support Vector Machine (SVM), Alternating Decision Trees (ADT) and Random Forests (RF)
- \Box Each of the models was trained with 240 examples and 10% cross-validation.
- SVM had highest accuracy and precision, high true positive (TP) rate for class 1 (fault cases)

	SVM	ADT	Random Forests
Correctly classified	95.42%	95.00%	86.67%
Precision (Average)	95.7%	95.2%	86.9%
Mean absolute error	0.0458	0.0859	0.2509
True positive for class 1	97.6%	96.4%	69.9%
False positive for class 0	2.4%	3.6%	30.1%

Washington University in St. Louis

~1a111/ta1KS/1CCC111 / D.11t11 $\Pi U U . / / W W W . CSC. W USU. CUU/^$

©2017 Rai Jain

Detection (cont.)

- The second model was trained to classify fault as *manifest* or *impending*.
- Prediction rate was 100% with SVM in test set for predicting impending faults from warning cases.
- Comparison with other works:
 - In [3] the authors used SVM to classify wind turbine faults using operational data and achieved 99.6% accuracy.
 - In [4] wind turbine faults were detected with accuracy 98.26% for linear SVM and 97.35 for Gaussian.
 - In [5] authors achieved 99.9% accuracy of classification of faults in rotating machinery with SVM.

Washington University in St. Louis

Localization of Faults

Two layered machine learning model for localizing manifest faults:

Manifest fault Markers Layer 1 Fault Markers Categorization Deep learning (Stacked Autoencoder) for impending faults:

Reasons:

- Automatic selection of features from high dimensional data
- Filtering information through the layers for better accuracy
- Gives improved results in other areas

Washington University in St. Louis

Localization of Faults and Performance Problems

□ Telstra dataset was adapted for evaluation

1	Id	5	Resource type 1 to 10
2	Location	6	Severity type 1 to 5
3	Features 1 to 386	7	Event type
4	Volumes for features	8	Fault severity level

- Fault severity level classes: No fault (0), a few faults (1) and many faults (2) and are based on actual faults reported by users
- Severity Type: Intensity of the warning predicts impending faults

Washington University in St. Louis

Stacked Autoencoder

- □ 100 Hidden layers in the first encoder
- □ 50 Hidden layers in the 2nd encoder
- Softmax layer provides supervised back-propagation improvement of the weights learned during unsupervised training.

Washington University in St. Louis

Confusion Matrix

	W/O Sparsity Regularization							
1	12	0	0	100%				
So	44.4%	0%	0%	0%				
tput Clas	1	7	0	87.5%				
	3.7%	25.9%	0%	12.5%				
nO 3	0	0	7	100%				
	0%	0%	25.9%	0%				
	92.3%	100%	100%	96.3%				
	7.7%	0%	0%	3.7%				
1 2 3 Target Class								
$\rho = 0.05, \beta = 1, Accuracy = 96.3\%$								
• Confusion matrix shows how man								

W Sparsity Regularization

1	13	0	0	100%			
	48.1%	0%	0%	0%			
tput Clas	0	7	0	100%			
	0%	25.9%	0%	0%			
00	0	0	7	100%			
3	0%	0%	25.9%	0%			
	100%	100%	100%	100%			
	0%	0%	0%	0%			
	1 2 3 Target Class						

ρ=0.1, β=4, Accuracy=100%

- Confusion matrix shows how many are correctly and incorrectly classified.
- A well tuned model give 100% accuracy. This is good compared to deep learning model for HVAC where accuracy is reported as ≥ 95% [6].
 Washington University in St. Louis

Effect of Relative Sizes of Hidden Layers

- □ H1=Size of hidden layer 1, H2=Size of hidden layer 2
- □ Accuracy and MSE are good for certain ranges of H1 and H2

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jain

- Handling fault and performance anomalies is crucial for the success of NFV deployments over clouds.
- A combination of shallow and deep learning structures works well for detection and localization of manifest and impending fault and performance issues.
- Evaluation has been done using real and synthetic datasets and results are comparable to or better than fault detection and localization in other areas.

Washington University in St. Louis

References

- 1. Kaggle datasets, <u>https://www.kaggle.com/datasets</u>
- 2. Z. Botev, "Fast multivariate kernel density estimation for high dimensions," 2016
- K. Leahy, R. L. Hu, I. C. Konstantakopoulos, C. J. Spanos, A. M. Agogino,"Diagnosing wind turbine faults using machine learning techniques applied to operational data," International Conference on Prognostics and Health Management (ICPHM), 2016
- 4. P. Santos, L. F. Villa, A. Reñones, A. Bustillo, J. Maudes, "An SVM-Based Solution for Fault Detection in Wind Turbines," Sensors, 2015
- G. Nicchiotti, L. Fromaigeat, L. Etienne, "Machine Learning Strategy for Fault Classification Using Only Nominal Data," European Conference Of The Prognostics And Health Management Society, 2016
- 6. D. Lee, B. Lee, J. W. Shin, "Fault Detection and Diagnosis with Modelica Language using Deep Belief Network," Proceedings of the 11th International Modelica Conference, 2015

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jain

Scan This to Download These Slides

Raj Jain http://rajjain.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icccn17p.htm

©2017 Raj Jain

25