Next Generation Internet: Architectures for Future Internet Evolution

Keynote at International Conference on Communications (ICC) June 14, 2012, Ottawa, Ontario, Canada These slides and audio/video recordings of this talk are available on-line at:

http://www.cse.wustl.edu/~jain/talks/icc12.htm

Washington University in St. Louis http://www.cse.w

http://www.cse.wustl.edu/~jain/talks/icc12.htm

- 1. Future Internet Research
- 2. Current trends in networking
- 3. Software defined networks
- 4. Our research on next generation: openADN

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icc12.htm

Why worry about Future Internet?

Billion dollar question!

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icc12.htm

History of the Future

- In 2005 US National Science Foundation asked: How would you design Internet today? Clean slate design.
 - □ "Future Internet Design" (FIND): Architecture research
 - "Global Environment for Networking Innovations" (GENI): Testbed
- European Union: 7th Framework program Japan, China, Korea, Australia, ...20+ countries
- ❑ April 2010: Future Internet Architecture (FIA): 4 Extra-Large
 Projects ⇒ Future Internet Assembly (FIA) in Europe
- Industry: Network Virtualization, Software Defined Networking

Ref: Jianli Pan, Subharthi Paul, and Raj Jain, "A Survey of Research on Future Internet Architectures," IEEE
Comm. Magazine, Vol. 49, No. 7, July 2011, pp. 26-36, http://www1.cse.wustl.edu/~jain/papers/internet.htm
Future Internet http://www1.cse.wustl.edu/~jain/papers/internet.htm
Future Internet http://www1.cse.wustl.edu/~jain/papers/internet.htm
Future Internet http://www1.cse.wustl.edu/~jain/talks/icc12.htmWashington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/icc12.htm

Key Problems with Current Internet

- Security: Fundamental architecture design issue. Control +Data intermixed. Security is just one of the policies.
- Mobility: Identity and location in one (IP Address) Makes mobility complex.
- 3. Energy: Assumes live and awake endsystems. Does not allow communication while sleeping. Many energy conscious systems today sleep.

4. More...

Ref: R. Jain, ``Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation," Proceedings of Military Communications Conference (MILCOM 2006), Washington, DC, October 23-25, 2006 Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/icc12.htm</u>

Internet Generations

2012: Where are we now?

- □ At the knee of Mobile Internet age (paradigm shift)
 - □ Computing (IBM 360) \Rightarrow Mini-computing (PDP11)
 - \Rightarrow Personal Computing (Desktop, PC+MAC) \Rightarrow Laptops
 - \Rightarrow Netbooks \Rightarrow Smart Phones + Tablets
 - Shift started on June 29, 2007 when iPhone was released.
- Most valued companies in the stock market are generally those that lead the paradigm shift
 - □ Automotive (General Motors) ⇒ Electrical (GE, Edison Electric) ⇒ Networking (Cisco + 3Com in 80's) ⇒ Internet (Netscape + Yahoo in 90's) ⇒ Mobile Internet (Apple +MS+ Google, 2010's)
- Note: Apple ≠ PC (MAC) company (mobile device company)
 □ Google ≠ search engine (mobile device company)
- Also Social Networking (Facebook), Internet Retail (Amazon) <u>Washington University in St. Louis</u> <u>http://www.cse.wustl.edu/~jain/talks/icc12.htm</u> ©2012 Raj Jain

5 Future Predictors

- 1. Miniaturization: Campus \Rightarrow Datacenter \Rightarrow Desktop \Rightarrow Laptop \Rightarrow Pocket \Rightarrow Multi-functional Pocket device
- 2. Mobility: Static \Rightarrow Mobile (1 km/hr) \Rightarrow Mobile (100 km/hr) \Rightarrow Mobile (600 km/hr)
- 3. Distance: PAN (5m) \Rightarrow LAN (500 m) \Rightarrow MAN (50 km) \Rightarrow WAN (500 km)
- 4. Applications: Defense \Rightarrow Industry \Rightarrow Personal
- 5. Social Needs: Energy, Environment, Health, Security
- Broadening and Aggregation: Research ⇒ Many Solutions ⇒ One Standard ⇒ General Public adoption, e.g., Ethernet
- Non-Linearity: Progress is not linear. It is exponential and bursty.
 Most predictions are linear ⇒ underestimates.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icc12.htm

©2012 Raj Jain

We are

here

Trend 1: Moore's Law

- □ Faster computers need faster networks
- $\Box \quad More \ storage \Rightarrow Faster \ networks$

Trend 2: Explosion of Mobile Apps and Clouds

- □ All top 50 Internet sites are services [Alexa]
- Almost all services are now mobile apps: Google, Facebook, Bank of America, ...
- □ Almost all services need to be global (World is flat)
- □ Almost all services use cloud computing (Easy management)

Networks need to support efficient service setup and delivery

Ref: Top 500 sites on the web, http://www.alexa.com/topsites Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/icc12.htm</u>

Our Solution: OpenADN

- Open Application Delivery Networking Platform Platform = OpenADN aware clients, servers, switches, and middle-boxes
- Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing

Step 1: Separation of Control and Data Planes

- □ Control = Prepare forwarding table
- Data Plane: Forward using the table
- Forwarding table is prepared by a central controller
- Protocol between the controller and the forwarding element: OpenFlow
- Centralized control of policies
- Switches are simple.
 Controller can be complex Can use powerful CPUs
- Lots of cheap switches
 = Good for large datacenters

 Ref: [MCK08] ``OpenFlow: Enabling Innovation in Campus Networks," OpenFlow Whitepaper, March 2008

 <u>http://www.openflow.org/documents/openflow-wp-latest.pdf</u>

 Washington University in St. Louis
 <u>http://www.cse.wustl.edu/~jain/talks/icc12.htm</u>

 ©2012 Raj Jain

Step 2: Multi-Tenants Clouds

- □ Problem: Multiple tenants in the datacenter
- Solution: Use multiple controllers. Each tenant can enforce its policies

Washington University in St. Louis

nant can enforce its policies Flow Table 1 Flow Table 2 Other traffic

□ Significant industry interest ⇒ Open Networking Foundation, <u>https://www.opennetworking.org/</u>

http://www.cse.wustl.edu/~jain/talks/icc12.htm

Step 3: Standardized Abstractions

- □ The routers are expensive because there is no standard implementation.
- Every vendor has its own hardware, operating/ management system, and proprietary protocol implementations.
- Similar to Mainframe era computers.
 No cross platform operating systems (e.g., Windows) or cross platform applications (java programs).

Example: PC Paradigm Shift

- Computing became cheaper because of clear division of hardware, operating system, and application boundaries with well defined APIs between them
- $\Box \quad Virtualization \Rightarrow simple management + multi-tenant isolation$

SDN Impact

- □ Why so much industry interest?
 - □ Commodity hardware
 - \Rightarrow Lots of cheap forwarding engines \Rightarrow Low cost
 - \Box Programmability \Rightarrow Customization
 - \Box Sharing with Isolation \Rightarrow Networking utility
 - Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly
- Opens up ways for new innovations
 - Dynamic topology control: Turn switches on/off depending upon the load and traffic locality
 - \Rightarrow "Energy proportional networking"

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icc12.htm

OpenADN Features

Server A1

Message level:

- □ Server selection
- Load balancing between servers
- □ Fault tolerance
- □ Server mobility
- User Mobility
- □ Secure L5-L7 headers and data (rat hole)
- Middlebox services: Intrusion detection, Content based routers, application firewalls, ...

Load

Balancer

Middlebox

- □ Control plane and data plane MBs
- Middlebox traversal sequence
- Message level policies
- **TCP** Splicing

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icc12.htm

©2012 Raj Jain

Server A2

Fault

Tolerance

Middlebox

Networking: Failures vs Successes

- □ 1986: MAP/TOP (vs Ethernet)
- □ 1988: OSI (vs TCP/IP)
- □ 1991: DQDB
- □ 1994: CMIP (vs SNMP)
- □ 1995: FDDI (vs Ethernet)
- □ 1996: 100BASE-VG or AnyLan (vs Ethernet)
- □ 1997: ATM to Desktop (vs Ethernet)
- □ 1998: ATM Switches (vs IP routers)
- □ 1998: MPOA (vs MPLS)
- □ 1999: Token Rings (vs Ethernet)
- □ 2003: HomeRF (vs WiFi)
- □ 2007: Resilient Packet Ring (vs Carrier Ethernet)
- □ IntServ, DiffServ, ...

Technology alone does not mean success.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icc12.htm

©2012 Raj Jain

llean

Sla

Key Features of OpenADN

- 1. Edge devices only.
 - Core network can be current TCP/IP based, OpenFlow or future SDN based
- 2. Coexistence (Backward compatibility): Old on New. New on Old
- 3. Incremental Deployment
- 4. Economic Incentive for first adopters
- 5. Resource owners (ISPs) keep complete control over their resources

Most versions of Ethernet followed these principles. Many versions of IP did not.

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/talks/icc12.htm

Resource Control

- ASPs keep complete control of their data.
 ISP does not have to look at the application headers or data to enforce application level policies
- ISPs keep complete control of their equipment.
 ASPs communicate their policies to ISP's control plane
- Middle boxes can be located anywhere on the global Internet (Of course, performance is best when they are close by)
- □ ISPs own OpenADN switches and offer them as a service
- □ ASPs or ISPs can own OpenADN middle boxes
- □ No changes to the core Internet

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icc12.htm

Data Center Applications

Repeated classification and load balancing

Washington University in St. Louis

- □ No application level control over MBs traversed
- Unnecessary traversals and reduced performance

http://www.cse.wustl.edu/~jain/talks/icc12.htm

Summary

- 1. Peak of **mobile internet** paradigm shift
- 2. Miniaturization, Mobility, Distance, Applications, Social needs help predict the linear future
- 3. Profusion of **multi cloud-based applications** on the Internet. Application services need replication, fault tolerance, traffic engineering, security, ...
- 4. **OpenADN** provides these features in a multi-cloud environment with backward compatibility, incremental deployment
- 5. Trend is towards simplifying and standardizing router interfaces \Rightarrow Software defined networking

Application Delivery: Opportunity for ISP's

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/icc12.htm

