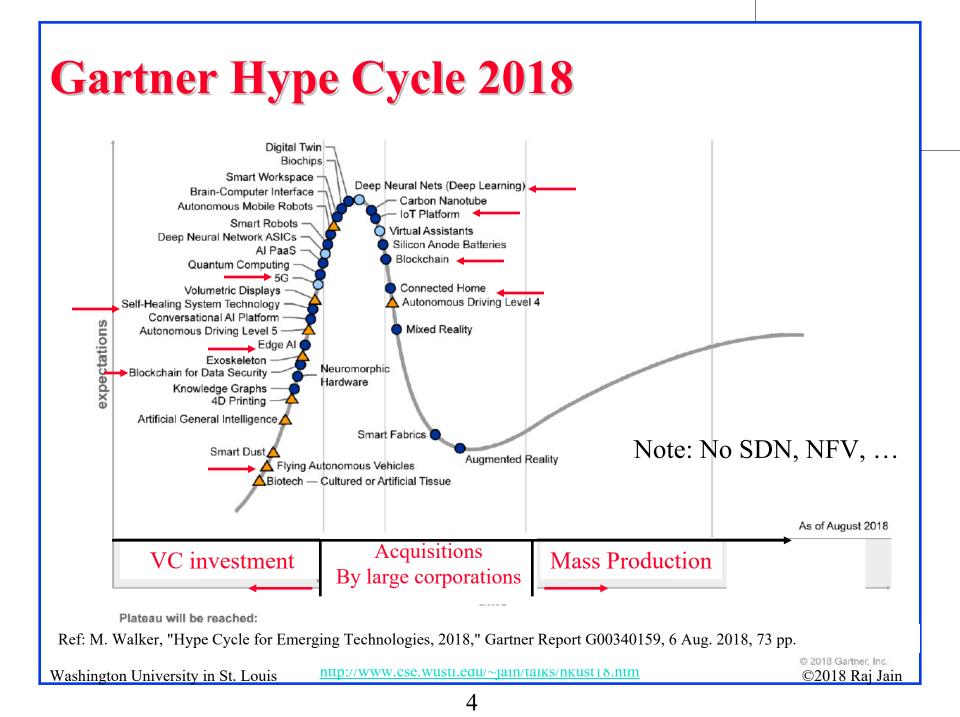

Trends and Issues in Softwarization of Networks: What's In, What's Out

Invited Talk at Hong Kong University of Science and Technology, Hong Kong, Nov. 8, 2018

These slides and recording of this talk are available on-line at: <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

- 1. What has changed in the last five years?
- 2. What has happened to SDN, NFV, and Clouds?
- 3. What's in, what's out?

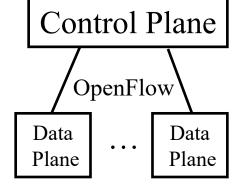
Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

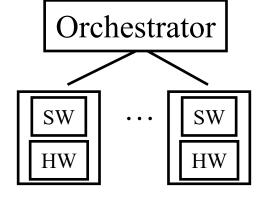

Selecting the Right Problems

- □ Important question for students, academics, entrepreneurs, and companies
- Goal: To impact
- □ Follow the **paradigm shifts**:
 - ▶ 1980: Ethernet
 - > 1990: ATM Networks
 - > 2000: Optical Networks
 - > 2005: Wireless Networks
 - > 2010: Next Generation Internet/SDN
 - > 2013: Multi-Cloud Computing
 - > 2018: Whatever is being **hyped** this year?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

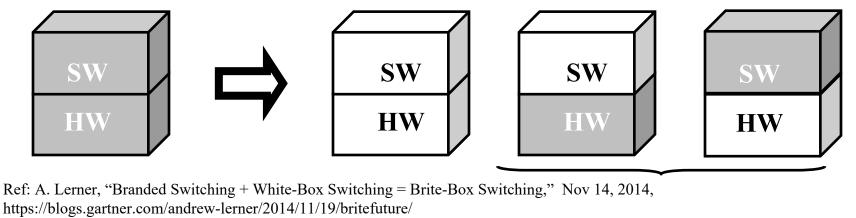

Trend 1: SDN to Disaggregation


□ SDN was invented in 2009

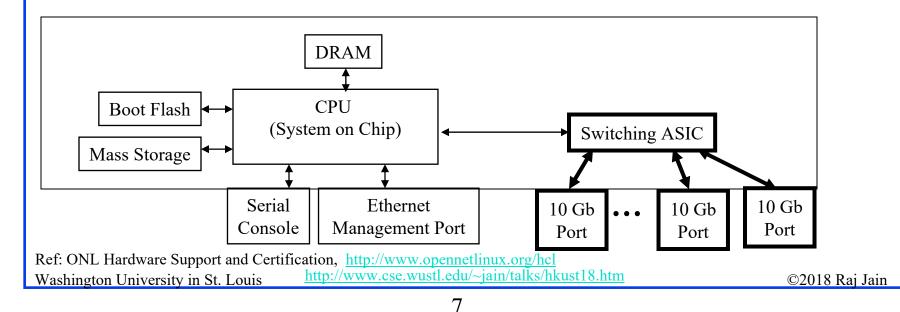
□ Then: SDN:

- Separation of control and data planes
- Centralization of Control
- Standard Protocol between the planes
- □ Now: Software Defined = **Disaggregation** of HW/SW
 - Commodity hardware
 - Software that runs on commodity HW
 - Legacy protocols survive

Ref: D. M Batista, G. Blair, F. Kon, R. Boutaba, D. Hutchison, R. Jain, R. Ramjee, C. Rothenberg, "Perspectives on software-defined networks: interviews with five leading scientists from the networking community" Journal of Internet Services and Applications 2015, 6:22, <u>http://www.cse.wustl.edu/~jain/papers/jisa15.htm</u> Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u> ©2018 Raj Jain



Disaggregation: Black Box to White Box


- □ All specialization and differentiation via software
- \Rightarrow White box networking
- **Black Box**: Proprietary HW with Proprietary SW
- □ White Box: Open Source Hardware and Software
- □ Software on a different hardware ⇒ hardware can change Different software on a hardware ⇒ Software can change
- Bright Box: Branded White box = Branded SW on open HW or Open SW on Branded HW

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

White Box Switches

- Switches by EdgeCore Networks (ACTON), Quanta, HPE, DNI, Dell, Mellanox, Delta Agema, Celestica, Alpha Networks, Ingrasys, Inventec, Netberg
- Switching ASICs by Broadcom, Marvell, Intel/Fulcrum, Mellanox, Barefoot, and Cavium
- CPUs: Intel Rangeley/Atom, Freescale, ARM A9

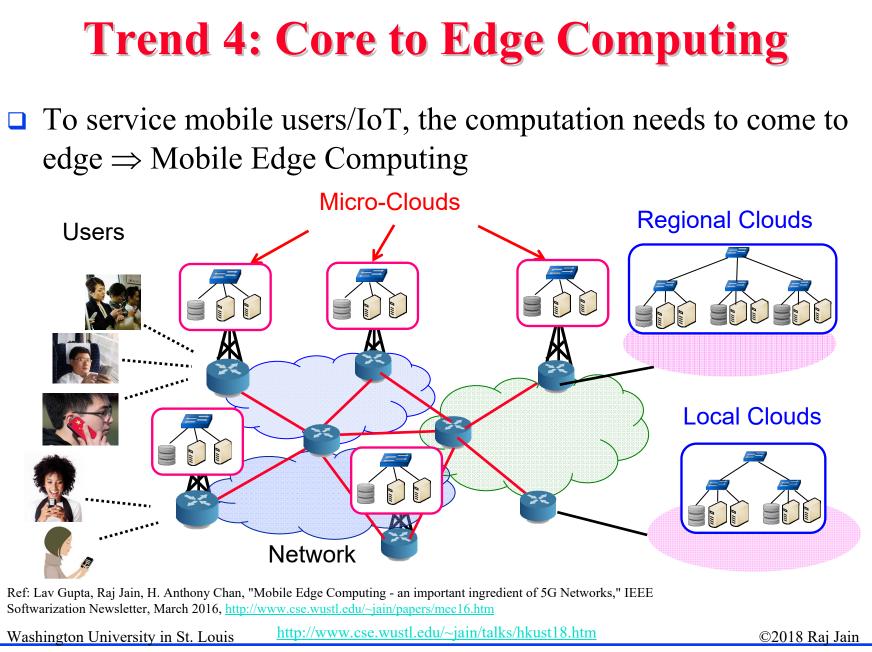
Trend 2: Separation of Control to Orchestration of Policies

Separation and Centralization of Control Plane

Orchestration of Policies

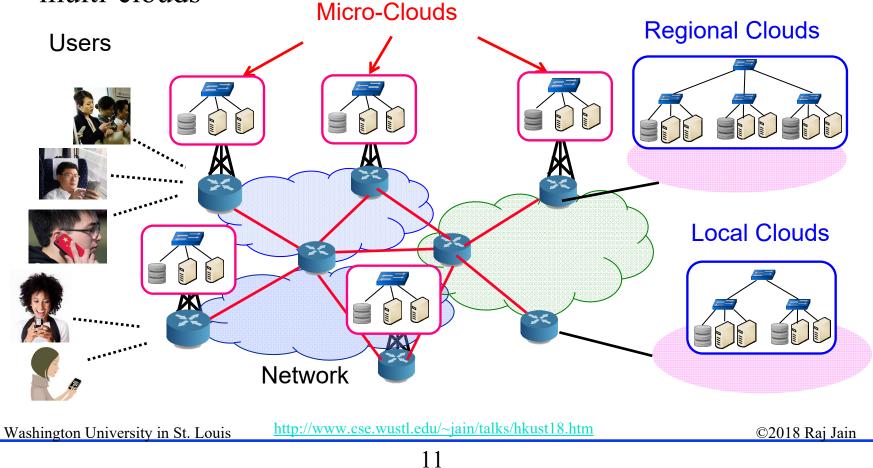
Micromanagement is not scalable

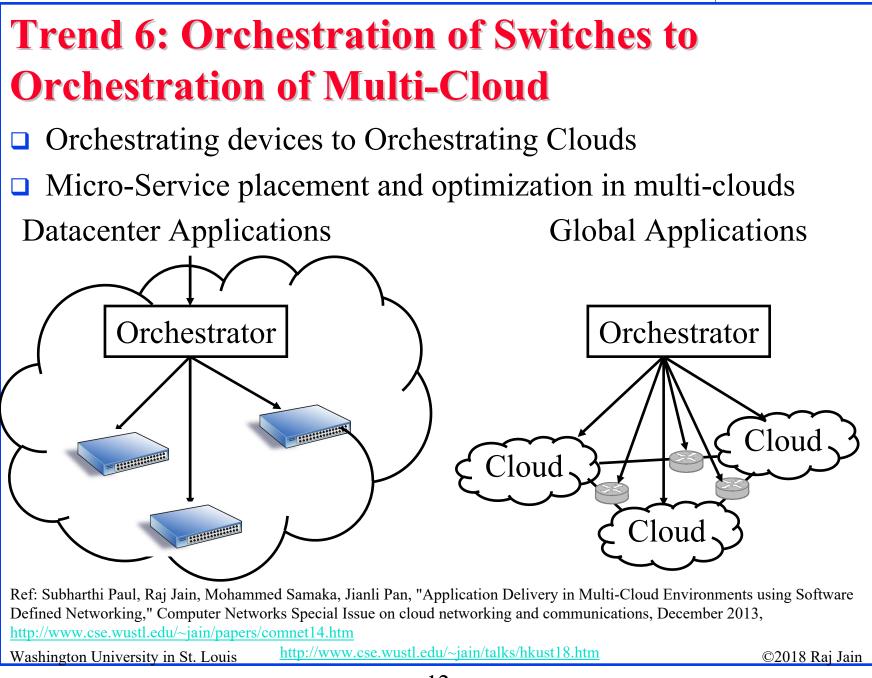
Washington University in St. Louis

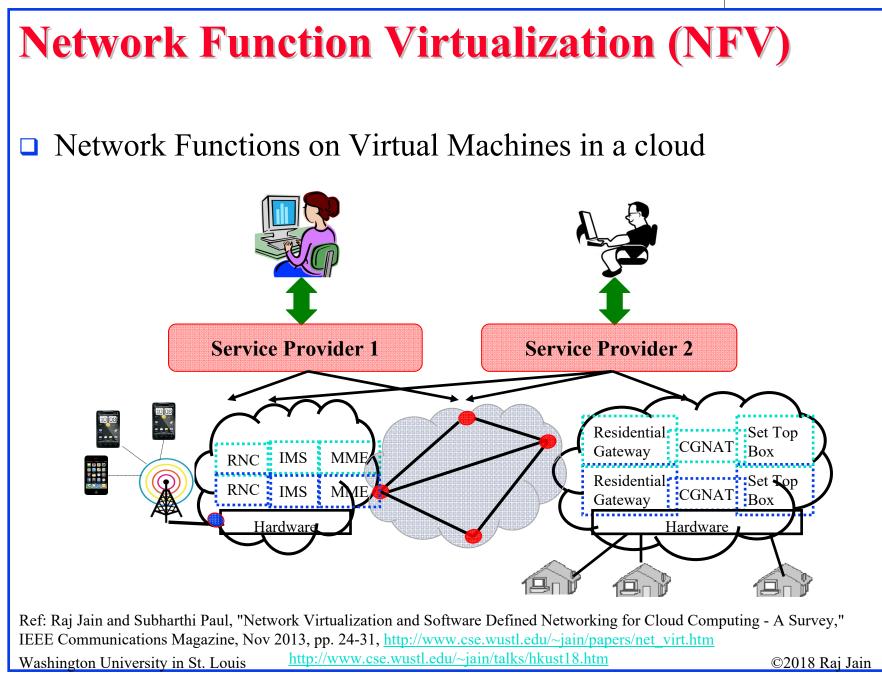

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

Trend 3: Clouds to Micro-Clouds

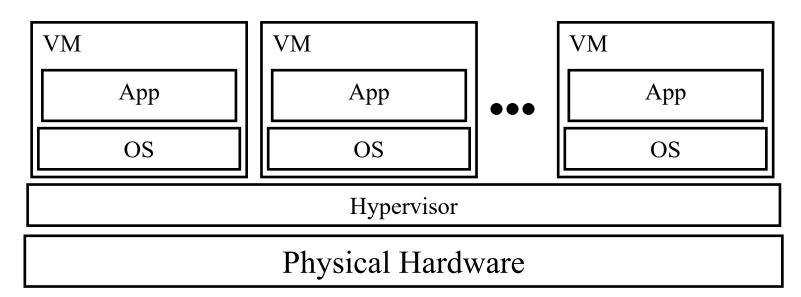
- □ Cloud computing was invented in 2006
- Then: Cloud = Large Data Center Multiple VMs managed by a cloud management system (OpenStack)
- Today: Cloud = Computing using virtual resources
 - µCloud = Cloud in a server with multiple VMs.
 - VMs managed via cloud management SW, e.g., OpenStack



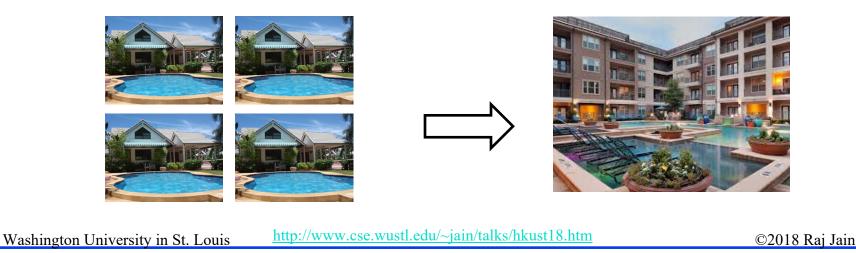




Trend 5: Services to Micro-Services


Decomposition: Applications are broken in to smaller pieces that can be developed, tested, and run in isolation on multi-clouds

Problems with Virtual Machines


- □ Each VM requires an operating system (OS)
 - > Each OS requires a license \Rightarrow CapEx
 - > Each OS has its own compute and storage overhead
 - > Needs maintenance, updates $\Rightarrow OpEx$
 - > VM Tax = added CapEx + OpEx

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

Trend 7: Virtualization to Containerization

Run many apps in the same virtual machine

- > These apps share the OS and its overhead
- Can't access each other's resources without explicit permission
- > Like apartments in a complex \Rightarrow Containers

Kata Containers

- Containers do have less security than VMs
- □ Kata Containers = VM + Container hybrid
- □ Combines "Intel Clear Containers" and "HyperV runV"
- Open source project under OpenStack Foundation
- Performance like containers, isolation and security like VMs
- □ Package once and run anywhere
 - VMware, Google, and Amazon are all moving towards this approach

Ref: https://katacontainers.io/

https://www.forbes.com/sites/janakirammsv/2017/12/11/why-kata-containers-is-good-for-the-industry-and-customers/2/#3d8cc2e9404f Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u> ©2018 Raj Jain

Standards are Slow

- □ Initially, Standards ⇒ Interoperability Iff all companies implement the same way
- Standards = Compromises ⇒ We agree to disagree All differing opinions are part of the standard as option Different companies choose different options ⇒ No Interoperability
- Need Interoperability organizations
 - > WiFi \Rightarrow Approves the subset of standard that is mandatory
- □ All this introduces delay

 \Rightarrow The standard out of date when it is ready for implementation

IEEE 802.11ah-2016 Long-Range WiFi for IoT. Started 2010. Taken over by competition: ZigBee, LoraWAN, ...

 Ref: http://www.ieee802.org/11/Reports/802.11_Timelines.htm

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/hkust18.htm

Standards are not Open

- Open \Rightarrow Anyone can implement it without fee
- □ IETF allows "non-discriminatory and reasonable licensing fee"
 ⇒ Not really open
- Open Source Initiative (OSI) Criteria:
 - No intentional secrets
 - > Free and publicly available
 - > All patents must be royalty-free for unrestricted use
 - > No license agreements, NDA, or paperwork to implement
 - Not dependent on non-open standards

 Ref: https://open_standard, https://opensource.org/osr Washington University in St. Louis

 https://www.cse.wustl.edu/~jain/talks/hkust18.htm

Trend 8: Standards to Open Source SW

- Standardization to Rough Consensus and Running Code
- IETF has ~100 working groups
 Open Linux Foundation has >100 open source networking projects. Their website can't be kept uptodate.
- □ 4 Opens:
 - > Open Source
 - > Open Design
 - > Open Development
 - > Open Community

Blockchains

- Blockchain is the technology that made Bitcoin secure
- Blockchain was invented by the inventor of Bitcoin
- After Bitcoin became successful, people started looking into the technology behind Bitcoin and found:
 - Blockchain is the key for its success
 - Two complete strangers can complete a transaction/contract without a third party

Example of a Contract: Wedding

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

©2018 Raj Jain

Wedding (Cont)

□ Centralized

Decentralized

- □ Centralized registry
- □ Single point of failure
- **Easier** to hacked

- Decentralized
- □ No single point of failure
- Very difficult to hack

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

©2018 Raj Jain

Trend: Centralized to Distributed

- **Trend**: Make everything decentralized with no central point of trust
- Two perfect strangers can exchange money, make a contract without a trusted third party
- Decentralized systems are
 - 1. More secure: Attack tolerant
 - 2. No single bottleneck
 - 3. More reliable: Fault tolerant
 - 4. No single point of control \Rightarrow No monopoly
- Blockchain is one way to do this among untrusted multi-domain systems.

Time is a cycle: Distributed vs. Centralized debate

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

©2018 Raj Jain

Examples of Centralized Systems

- **Banks**: Allow money transfer between two accounts
- **City Records**
- **U** Voting Authorities
- □ **Networks:** Certificate Authorities, DNS
- □ In all cases:
 - 1. There is a central third party to be trusted
 - Central party maintains a large database of information ⇒ Attracts Hackers
 - 3. Central party may be hacked \Rightarrow affects millions
 - 4. Central party is a single point of failure. Can malfunction or be bribed.

 Ref: Tara Salman, Maede Zolanvari, Aiman Erbad, Raj Jain, and Mohammed Samaka, "Security Services Using Blockchains: A State of the Art

 Survey" IEEE Communications Surveys and Tutorials, Accepted September 2018, 28 pp., http://www.cse.wustl.edu/~jain/papers/bcs.htm

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/hkust18.htm

Networking Applications of Blockchains

Multi-Domain Systems:

- > Multiple Cloud Service Providers
- Multiple cellular providers
- > Multi-Interface devices: WiFi, Cell, Bluetooth, ...
- > BGP: BGP Authentication

Globally Centralized Systems:

- > DNS
- > Public Key Infrastructure
 - Certificate Authorities issue certificates
 - Single Point of Failure
 - □ Example: Diginotar Dutch CA compromised in 2011

Explore blockchains for multi-domain/centralized systems

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

Blockchain Challenges

- □ High computational cost ⇒ 7 bitcoin transactions per second vs. 1,700 visa credit card transactions
- □ Software bugs \Rightarrow Stolen money \Rightarrow Forking in Ethereum
- □ All data is public in public blockchains

Smart Everything

Smart Watch

Smart TV

Smart Car

Smart Kegs

Smart Health

Smart Home

Smart Space

Smart Industries

Smart Cities

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

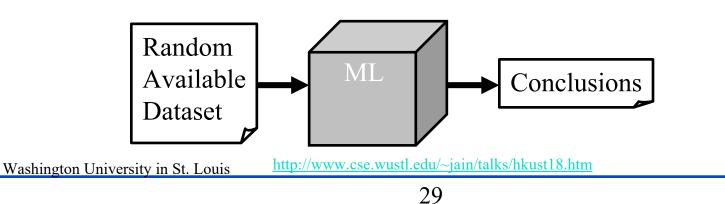
27

What's Smart?

- □ Old: Smart = Can think \Rightarrow Computation = Can Recall \Rightarrow Storage
- Now: Smart = Can find quickly, Can Delegate
 ⇒ Communicate = Networking
- Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...

Not-Smart Smart

□ Smart = Apply the latest **technology** to solve problems


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

©2018 Raj Jain

Machine Learning Challenges

- □ Machine learning is currently a blackbox
- □ ML algorithms are developed/used without domain expertise
- Data cleanliness, labeling, feature extractions, all require domain knowledge, e.g.,
 What is the distance between Port 80, Port 81, and Port 8080?
- Data Imbalance (1 in a million packet is an attack packet).
- □ Use Synthetic data is used \Rightarrow Garbage-In, Garbage-Out
- □ Results are stated without model validation.
- $\square Explainability issue \Rightarrow No idea of why the results are what they are$

Trend 11: Managed to Self-Driven Networks

- □ **Self-Discover**: Find its components
- □ Self-Organize and Self-configure: Trending. Predict.
- Auto-Manage = Auto-BSS (bill)/Auto-OSS (provision)
- □ **Self-Monitor**: Counters and Probes. Telemetry
- □ Self-Diagnose and Self-Heal: Self-Report to human operator

Network Manager

©2018 Rai Jain

 Ref: Kireerti Kompella, https://datatracker.ietf.org/meeting/98/materials/slides-98-nmrg-self-driving-networks

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/hkust18.htm

Intent-Based Policy Management

- Intent: Tell what you want. Not how you want it done.
 E.g., Tell Google maps where you want to go. Not how to.
- □ Invariance: Intent doesn't change if the network changes, devices fail, ...
- Portability: Independent of infrastructure, equipment vendors, service providers, protocols used, media used, ...
- □ **Compose-ability**: Can use any infrastructure, ...
- □ Scalable: From one to billions. Single controllers not scalable.
- Action requires context: Actions need to adopt to changes in infrastructure
- OpenDaylight has a new project on Network Intent Composition (NIC)

 Ref: https://www.sdxcentral.com/articles/contributed/network-intent-summit-perspective-david-lenrow/2015/02/

 https://wiki.opendaylight.org/view/Project_Proposals:Network_Intent_Composition

 Washington University in St. Louis

 http://www.cse.wustl.edu/~jain/talks/hkust18.htm

Summary

#	Past	Present/Future
1	SDN	Disaggregation
	Proprietary	Standardized
	Black Boxes	White Boxes
2	Control	Orchestration
3	Clouds	Micro-Clouds
4	Core	Edge
5	Services	Micro-services
6	Orchestration of	Orchestration of
	Switches	Multi-Cloud
7	Virtualization	Containerization
8	Standards	Open-Source SW
9	Centralized	Distributed
10	Smart	Intelligent
11	Managed	Self-Driven

- 1. Networking is changing faster than PhD research cycles
- 2. For impact/success, publishing is not sufficient. Implement your research in open source SW.

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

Related Papers

Multi-Cloud:

- Deval Bhamare, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta, H. Anthony Chan, "Optimal Virtual Network Function Placement and Resource Allocation in Multi-Cloud Service Function Chaining Architecture," Computer Communications, Vol. 102, April 2017, pp. 1-16, http://www.cse.wustl.edu/~jain/papers/comcom17.htm
- Deval Bhamare, Raj Jain, Mohammed Samaka, Aiman Erbad, "A Survey on Service Function Chaining," Journal of Network and Computer Applications, Vol. 75, Nov 2016, pp. 138-155, <u>http://www.cse.wustl.edu/~jain/papers/jnca16.htm</u>
- Lav Gupta, Prof Raj Jain, Prof Mohammed Samaka, Prof Aiman Erbad, and Dr. Deval Bhamare, "Performance Evaluation of Multi-Cloud Management and Control Systems," Recent Advances in Communications and Network Technology, 2016, Vol. 5, Issue 1, pp. 9-18, <u>http://www.cse.wustl.edu/~jain/papers/racnt.htm</u>

Subharthi Paul, Raj Jain, Mohammed Samaka, Aiman Erbaud, "Service Chaining for NFV and Delivery of other Applications in a Global Multi-Cloud Environment," 21st Annual International Conference on Advanced Computing and Communications (ADCOM) 2015, Chennai, India, September 18-20, 2015,

<u>http://www.cse.wustl.edu/~jain/papers/adn_in15.htm</u> Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

Edge Computing:

- Lav Gupta, Raj Jain, H. Anthony Chan, "Mobile Edge Computing an important ingredient of 5G Networks," IEEE Softwarization Newsletter, March 2016, http://sdn.ieee.org/newsletter/march-2016/mobile-edgecomputing-an-important-ingredient-of-5g-networks
- Deval Bhamare, Aiman Erbad, Raj Jain, Mohammed Samaka, "Automated Service Delivery Platform for C-RANs," The IEEE Third International Workshop on Mobile Cloud Computing systems, Management, and Security (MCSMS) 2017, Valencia Spain, May 8-11, 2017,

http://www.cse.wustl.edu/~jain/papers/mcsms17.htm,

Micro-Services:

- Deval Bhamare, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta, "Exploring Micro-Services for Enhancing Internet QoS," Transactions on Emergin Telecommunications Technologies, Accepted June, 2018, ISSN: 2161-3915, DOI: 10.1002/ett.3445, http://www.cse.wustl.edu/~jain/papers/ms_ett18.htm
- Deval Bhamare, Aiman Erbad, Raj Jain, Maede Zolanvari, Mohammed Samaka, "Efficient Virtual Network Function Placement Strategies for Cloud Radio Access Networks," Computer Communications, Volume 127, May 2018, pp. 50-60, ISSN 0140-3664, DOI:<u>10.1016/j.comcom.2018.05.004</u>
- Deval Bhamare, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta, H. Anthony Chan, "Multi-Objective Scheduling of Micro-Services for Optimal Service Function Chains," International Conference on Communications (ICC 2017), May 21-25, 2017, <u>http://www.cse.wustl.edu/~jain/papers/icc17.htm</u>

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

Micro-Services (Cont):

- Deval Bhamare, Raj Jain, Mohammed Samaka, Gabor Vaszkun, Aiman Erbad, "Multi-Cloud Distribution of Virtual Functions and Dynamic Service Deployment: OpenADN Perspective," 2015 IEEE International Conference on Cloud Engineering (IC2E), Tempe, AZ, March 9-13, 2015, pp. 299-304, <u>http://www.cse.wustl.edu/~jain/papers/vm_dist.htm</u>
- Deval Bhamare, Raj Jain, Mohammed Samaka, Aiman Erbad, "A Survey on Service Function Chaining," Journal of Network and Computer Applications, Vol. 75, Nov 2016, pp. 138-155, ISSN: 10848045, DOI: 10.1016/j.jnca.2016.09.001,

http://www.cse.wustl.edu/~jain/papers/jnca16.htm

- Lav Gupta, M. Samaka, Raj Jain, Aiman Erbad, Deval Bhamare, H. Anthony Chan, "Fault and Performance Management in Multi-Cloud **Based NFV using Shallow and Deep Predictive Structures**," 26th International Conference on Computer Communications and Networks (ICCCN 2017), Vancouver, Canada, July 31-Aug 3, 2017, http://www.cse.wustl.edu/~jain/papers/icccn17.htm
- Tara Salman, Deval Bhamare, Aiman Erbad, Raj Jain, Mohammed Samaka, "Machine Learning for Anomaly Detection and Categorization in Multi-cloud Environments," The 4th IEEE International Conference on Cyber Security and Cloud Computing (IEEE CSCloud 2017), New York, June 26-28, 2017, http://www.cse.wustl.edu/~jain/papers/cscloud.htm
- Lav Gupta, Mohammed Samaka, Raj Jain, Aiman Erbad, Deval Bhamare, Chris Metz, "COLAP: A Predictive Framework for Service Function Chain Placement in a Multi-cloud Environment," The 7th IEEE Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, Jan 9-11, 2017, http://www.cse.wustl.edu/~jain/papers/clp_ccwc.htm
- Deval Bhamare, Tara Salman, Mohammed Samaka, Aiman Erbad, Raj Jain, "Feasibility of Supervised Machine Learning for Cloud Security," 3rd International Conference on Information Science and Security (ICISS2016), December 19th - 22nd, 2016, Pattaya, Thailand,,

http://www.cse.wustl.edu/~jain/papers/iciss16.htm Washington University in St. Louis

IoT:

 Tara Salman, Raj Jain, "A Survey of Protocols and Standards for Internet of Things," Advanced Computing and Communications, Vol. 1, No. 1, March 2017, <u>http://www.cse.wustl.edu/~jain/papers/iot_accs.htm</u>

Blockchain:

- Tara Salman, Maede Zolanvari, Aiman Erbad, Raj Jain, and Mohammed Samaka, "Security Services Using Blockchains: A State of the Art Survey" IEEE Communications Surveys and Tutorials, September 2018, 28 pp., <u>http://www.cse.wustl.edu/~jain/papers/bcs.htm</u>
- Tara Salman, Raj Jain, and Lav Gupta, "Probabilistic Blockchains: A Blockchain Paradigm for Collaborative Decision-Making," 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON 2018), New York, NY, November 8-10, 2018, 9 pp., <u>http://www.cse.wustl.edu/~jain/papers/pbc_uem.htm</u>

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

Related Talks/Class Lectures

- Raj Jain, "CSE 570: Recent Advances in Networking," Spring 2018, <u>http://www.cse.wustl.edu/~jain/cse570-</u> <u>18/index.html</u>
- Raj Jain, "Blockchains: Networking Applications," An invited talk at the 38th IEEE Sarnoff Symposium, Newark, NJ, Sep 19, 2017,

http://www.cse.wustl.edu/~jain/talks/blc_srnf.htm

- Raj Jain, "The Catch-up Game: Quest for the Impact," Keynote at ACM SIGCOMM 2017, Los Angeles, CA, August 22, 2017, <u>http://www.cse.wustl.edu/~jain/talks/sigcomm.htm</u>
- Raj Jain, "Recent Advances in Networking and their Impact on Smart Cities," Keynote at 4th IEEE International Smart Cities Conference (ISC2), Kansas City, MO, September 16-19, 2018, <u>http://www.cse.wustl.edu/~jain/talks/smrtciti.htm</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/hkust18.htm

List of Acronyms

- □ API Application Programming Interface
- □ CapEx Capital Expenditure
- **CE** Community Edition
- □ CLI Command Language Interface
- CNCF Cloud Native Computing Foundation
- DCT Docker Content Trust
- **E** Enterprise Edition
- □ ID Identifier
- OCI Open Cloud Initiative
- OpEx Operational Expenses
- OS Operating System
- **TCP** Transmission Control Protocol
- □ VM Virtual Machine
- VXLANVirtual eXtended Local Area Network

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/talks/hkust18.htm</u>

Scan This to Download These Slides

