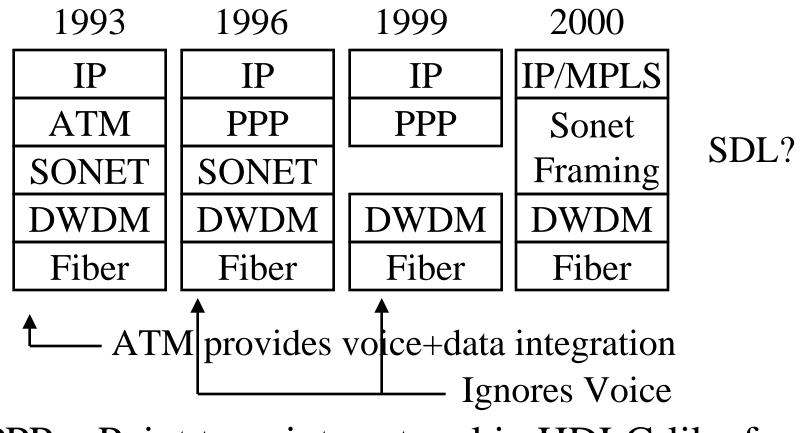
IP Over

DWDM

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/


http://www.cse.ohio-state.edu/~jain/talks/h_aipwd.htm

The Ohio State University

- □ Stack Debate: To SONET or Not to SONET?
- Why we have Multi-Layer Stack?
- What are the Problems with Multi-layer Stack?
- □ IP over DWDM Node Architecture and Issues
- Virtual Topology Issues
- Multiprotocol Lambda Switching
- □ IP/MPLS over DWDM

Stack Debate

PPP = Point to point protocol in HDLC-like framing SDL = Simple Data Link

The Ohio State University

Simple Data Link

- Framing: How to tell where the frame begins and ends
- Two methods:
 - HDLC: 011111110 Flag
 - Need byte stuffing
 - Arbitrary increase in data rate
 - Need byte-level processing ⇒ slow
 - ATM: Header error check. Hunt and resync.
- □ SDL: Use HEC plus length (since variable size payload)

SONET Functions

- Clock Synchronization
- □ Rate Multiplexing/Traffic Grooming
- Rate Division/Inverse multiplexing
- □ Fault Tolerance
- □ Signal trace
- Error Monitoring
- \Box Fault Isolation \Rightarrow Dual Ring
- □ Localized Decision ⇒ Fast Restoration

Multi-Layer Stack: Why?

- Speed: λ > SONET > ATM > IP
 ATM < OC-12, IP < OC-3
 Low speed devices ⇒ Not enough to fill a λ
 SONET (1λ) limited to 10 Gbps
- □ Distance: End-system, Enterprise backbone, Carrier Access, Carrier Backbone, Core
- □ Some unique function in each layer
 - ATM = Access/Integration/Signaling/QoS/TM
 - SONET = Mux/Transport

Multi-layer Stack: Problems

- Increasing Bandwidth
 - ⇒ Core technologies move towards the edges
- □ Gigabit Routers ⇒ No need for grooming
 One router port should be able to use all resources.
- □ Functional overlap:
 - Multiplexing: $DWDM \ \lambda = \Sigma \ STM = \Sigma \ VC = \Sigma \ Flows = \Sigma \ packets$
 - o Routing: DWDM, SONET, ATM, IP
 - QoS/Integration: ATM, IP
- Static division of bandwidth in SONET good for continuous traffic not for bursty traffic.

Multilayer Stack Problems (Cont)

- □ Failure affects multiple layers:
 - 1 Fiber \Rightarrow 64 $\lambda \Rightarrow$ 160Gbps = 1000 OC-3 \Rightarrow 10⁵ VCs \Rightarrow 10⁸ Flows
- Restoration at multiple layers:
 - $DWDM \Rightarrow SONET \Rightarrow ATM \Rightarrow IP$
- □ SONET \Rightarrow 50% lost = Inefficient Protection
- SONET ⇒ Manual (jumpers) ⇒ Slow provisioning Need Bandwidth on all rings ⇒ months/connection Bandwidth reserved during setup
- Any layer can bottleneck
 - ⇒ Intersection of Features + Union of Problems

The Ohio State University

IP Directly over DWDM: Why?

- □ IP ⇒ revenue
 DWDM ⇒ Cheap bandwidth
 IP and DWDM ⇒ Winning combination
 Avoid the cost of SONET/ATM equipment
- □ IP routers at OC-192 (10 Gb/s)
 - ⇒ Don't need SONET multiplexing
- Coordinated restoration at optical/IP level
- Coordinated path determination at optical/IP level
- SONET Framing can remain for error monitoring Two parts of a layer: Framing + Protocols

IP over DWDM Node

IP Router

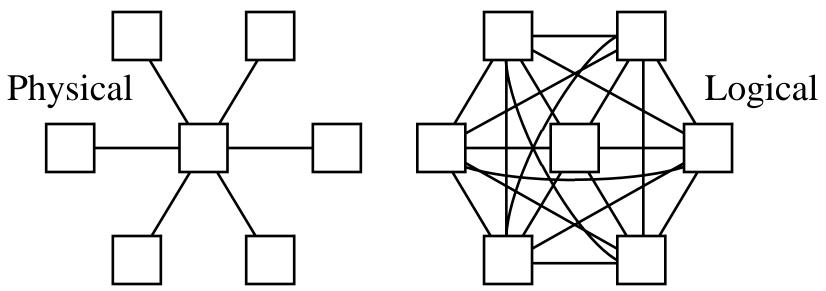
ATM Switch

SONET

Mux/Demux

Wavelength
Crossconnect

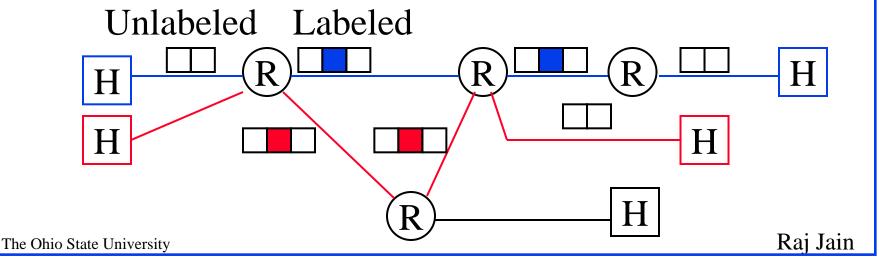
- Each optical node will be an IP addressable device
- Will implement OSPF/RIP/BGP, Protection,
 Wavelength Switching, QoS


The Ohio State University

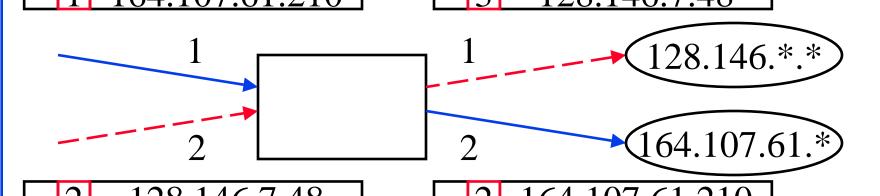
IP over DWDM: Issues

- Routing Wavelength Assignment Algorithms
- Cheaper High-Speed Routers
- Topology design Algorithms
- Wavelength conversion devices
- Packet Switching Architecture
- Protection schemes
- □ Inverse multiplexing for higher speed pipes
- QoS
- Multicast

Virtual Topology Issue Voice **IP** layer (64k NB) **switches SDH ATM layer OC3/OC12** layer **SDH** OC12 layer **Optical** λ-based layer connections Fiber/ duct layer Ref: Dixit Raj Jain The Ohio State University

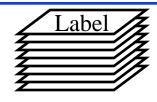

IP over ATM: Lessons

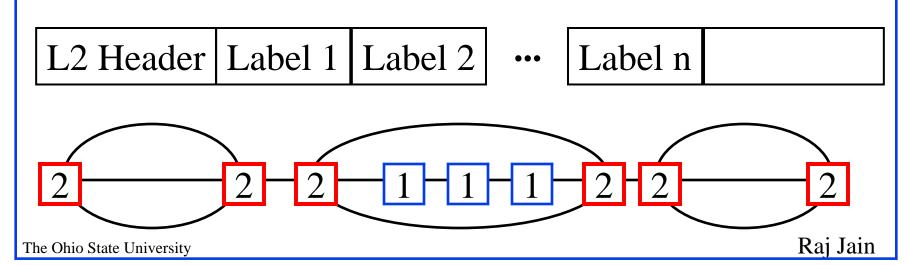
- Duplication between PNNI and OSPF
- \Box Virtual topology \Rightarrow n² scaling problem
- □ Solutions:
 - → IP Switching ⇒ Make every switch a router
 - \circ MPLS \Rightarrow Make every switch an LSR


Label Switching

- □ Label = Circuit number = VC Id
- □ Ingress router/host puts a label. Exit router strips it off.
- □ Switches switch packets based on labels.
 Do not need to look inside ⇒ Fast.

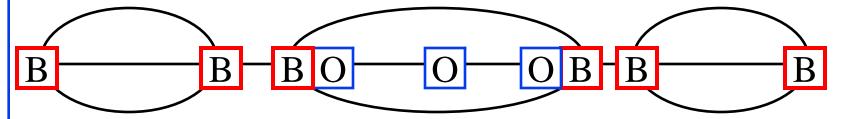
Label Switching (Cont)


- □ Labels have local significance
- □ Labels are changed at every hop

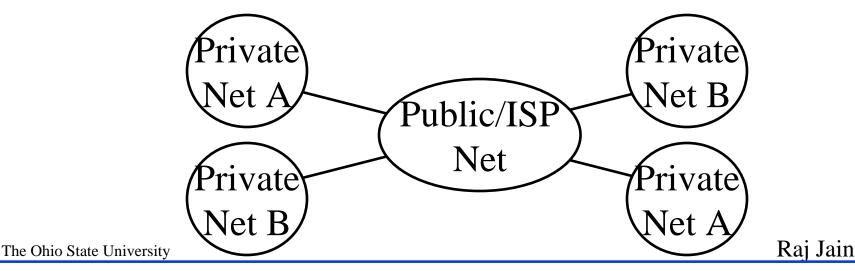

Input	Input	Adr	Output	Output
Port	Label	Prefix	Port	Label
1	1	164.107.61.*	2	2
2	2	128.146.*.*	1	3

The Ohio State University

Label Stacks



- □ A MPLS packet may have multiple labels
- Labels are pushed/popped as they enter/leave MPLS domain
- Stack allows hierarchy of MPLS domains
- Bottom label may indicate protocol (0=IPv4, 2=IPv6)



Label Stack Examples

1. BGP/OSPF Routing Hierarchy

2. VPN: Top label used in public network. Net A and B can use the same private addresses.

Advantages of MPLS

- MPLS takes the best of both IP and ATM networks
- Works on both ATM and non-ATM networks
- Common routing and label distribution on all media
 - ⇒ Easier management
- No routing over large cloud issue

IP over MPLS over DWDM

- ☐ MPLS = Multi-Protocol Lambda Switching
- □ DWDM network ≈ ATM network with Limitations
- □ Optical Channel Trail = VC = LSPs = Traffic Trunk
- ☐ Fiber = Link
- □ Limited # of channels
- \Box Global significance, if no λ conversion
- \Box Local significance with λ conversion (still complex)
- \Box Granularity = $\lambda \Rightarrow$ Fixed datarate
- \square No aggregation yet \Rightarrow No label merging

MPLS over DWDM (Cont)

- \square No hierarchy yet \Rightarrow No label stacks
- \square No TDM yet \Rightarrow No cells or packets
- No queueing ⇒ No scheduling, No Priority, No burstiness, No policing
- □ Need Shaping/grooming at entry
- Faster restoration via redundancy (rings/mesh)
- Vendor specific management
 - ⇒ Interoperability issues

MPLS Control Plane: Today

- □ Resource Discovery: IGP (OSPF/PNNI)
- □ Path Computation: IGP (OSPF/PNNI)
- Connection Management: Label Distribution via IGP(OSPF), LDP, RSVP
- Survivability: Rerouting,...
- Constraint-based routing based on data rate, overbooking, delay, ...

MPLS Control Plane: Tomorrow

- Next Hop Forwarding Label Entry (NHFLE)
 - = Preprogrammed λ switching
 - = Wavelength Forwarding Information Base matrix
 - \Rightarrow <Input port, λ > to <output port, λ > mapping
- Constraints: Data rate, Attenuation, Dispersion, Length, delay
- Topologies: Linear and rings to partial Mesh
- \square λ control plane via network management
 - \Rightarrow Permanent \Rightarrow Static routing
 - \Rightarrow Too slow for restoration

MPLS Control Tomorrow (Cont)

- Can add resilience (survivability) preemption,
 resource class affinity attributes to trails
- □ Each OXC will be an IP addressable device
- Control plane can be out-of-band IP channel, dedicated supervisory channel
- Need to build on concept of "Abstract Node" in IP routing ⇒ Failures are handled locally
- λ availability will be advertised by optical node/WRouter

Optical Node Architecture

IP/MPLS Control Plane

Switch Fabric Controller

Data Plane

- Pre-configured control wavelength upon initialization
- □ Need to develop hierarchical/aggregation concepts (label stacks or VPs)
 - \Rightarrow λ -Group (Optical channel, optical path, Light path)
- Add light path constraints to MPLS label distribution or explicit path requests
- □ Ref: draft-awduche-mpls-te-optical-00.txt

Summary

- ☐ High IP Routing speeds and volumes
 - ⇒ Need a full wavelength
 - ⇒ Many ATM/SONET functions not needed
- □ Need MPLS to provide QoS, Isolation
- □ Protection/Restoration/Routing should be coordinated between IP/MPLS and DWDM
- Need to develop hierarchy/aggregation concepts for DWDM

References:

- □ See references in http://www.cse.ohio-state.edu/~jain/refs/opt_refs.htm
- □ Recommended books on optical networking, <u>http://www.cse.ohio-</u> <u>state.edu/~jain/refs/opt_book.htm</u>
- Optical networking and DWDM,
 http://www.cse.ohio-state.edu/~jain/cis788-99/dwdm/index.html
- □ IP over DWDM, http://www.cse.ohio-state.edu/~jain/cis788-99/ip_dwdm/index.html
- Newsgroup: sci.optics.fiber

Acronyms

■ ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

DWDM Digital Wavelength Division Multiplexing

GHz Giga Hertz

□ IGP Interior Gateway Protocol

□ IP Internet Protocol

□ IPv4 IP Version 4

□ IPv6 IP Version 6

■ MIP Millions of Instructions per second

MPLS Multiprotocol Label Switching

■ NHFLE Next Hop Forwarding Label Entry

Acronyms (Cont)

OC Optical Carrier

OSPF Open Shortest Path First

OXC Optical cross connect

PC Personal Computers

PNNI Private Network to Node Interface

PPP Point-to-point protocol

□ SONET Synchronous Optical Network

□ TDM Time Division Multiplexing

□ VC Virtual Circuit

VPs Virtual Paths

■ WRouter Wavelength Router