

- Distance-Bandwidth Principle
- □ 10 Mbps to 100 Mbps
- Gigabit PHY Issues
- Gigabit MAC Issues
- **Status**
- □ ATM vs Gigabit Ethernet

The Ohio State University

- □ Efficiency = Max throughput/Media bandwidth
- \square Efficiency is a decreasing function of α
 - α = Propagation delay /Transmission time
 - = (Distance/Speed of light)/(Transmission size/Bits/sec)
 - = Distance×Bits/sec/(Speed of light)(Transmission size)
- □ Bit rate-distance-transmission size tradeoff.
- □ 100 Mb/s \Rightarrow Change distance or frame size

Ethernet vs Fast Ethernet

	Ethernet	Fast Ethernet		
Speed	10 Mbps	100 Mbps		
MAC	CSMA/CD	CSMA/CD		
Network diameter	2.5 km	205 m		
Topology	Bus, star	Star		
Cable	Coax, UTP, Fiber	UTP, Fiber		
Standard	802.3	802.3u		
Cost	Χ	2X		
The Ohio State University		Raj Jain		

Fast Ethernet Standards

- **100BASE-T4:** 100 Mb/s over 4 pairs of CAT-3, 4, 5
- □ 100BASE-TX: 100 Mb/s over 2 pairs of CAT-5, STP
- □ 100BASE-FX: 100 Mbps CSMA/CD over 2 fibers
- **100BASE-X:** 100BASE-TX or 100BASE-FX
- **100BASE-T:** 100BASE-T4, 100BASE-TX, or 100BASE-FX

Full-Duplex Ethernet

- Uses point-to-point links between TWO nodes
- □ Full-duplex bi-directional transmission
- **Transmit any time**
- Many vendors are shipping switch/bridge/NICs with full duplex
- □ No collisions \Rightarrow 50+ Km on fiber.
- □ Between servers and switches or between switches

Gigabit Ethernet

- □ Being standardized by 802.3z
- □ Project approved by IEEE in June 1996
- 802.3 meets every three months ⇒ Too slow
 ⇒ Gigabit Ethernet Alliance (GEA) formed.
 It meets every two weeks.
- Decisions made at GEA are formalized at 802.3 High-Speed Study Group (HSSG)
- Based on Fiber Channel PHY
- □ Shared (half-duplex) and full-duplex version
- Gigabit 802.12 and 802.3 to have the same PHY

How Much is a Gbps?

- □ 622,000,000 bps = OC-12
- □ 800,000,000 bps (100 MBps Fiber Channel)
- □ 1,000,000,000 bps
- □ 1,073,741,800 bps = 2^{30} bps ($2^{10} = 1024 = 1k$)
- □ 1,244,000,000 bps = OC-24
- □ 800 Mbps \Rightarrow Fiber Channel PHY
 - \Rightarrow Shorter time to market
- □ Decision: 1,000,000,000 bps \Rightarrow 1.25 GBaud PHY
- □ Not multiple speed \Rightarrow Sub-gigabit Ethernet rejected

D 1000Base-X

Physical Media

- □ Unshielded Twisted Pair (UTP-5): 4-pairs
- □ Shielded Twisted Pair (STP)
- \square Multimode Fiber: 50 μm and 62.5 μm
 - Use CD lasers
- Single-Mode Fiber
- □ Bit Error Rate better than 10⁻¹²

How Far Should It Go?

□ Full-Duplex:

○ Fiber Channel: 300 m on 62.5 μ m at 800 Mbps ⇒ 230 m at 1000 Mbps

• Decision: 500 m at 1000 Mbps

 \Rightarrow Minor changes to FC PHY

□ Shared:

• CSMA/CD without any changes

 \Rightarrow 20 m at 1 Gb/s (Too small)

• Decision: 200 m shared

 \Rightarrow Minor changes to 802.3 MAC

- Symbol Codes for Specific Signals: Jam, End-of-packet, beginning of packet
- PHY-based flow Control: No. Use the XON/XOFF flow control of 802.3x

850 nm vs 1300 nm lasers

- □ 850 nm used in 10Base-F
 - \circ Cannot go full distance with 62.5-µm fiber
 - \circ 500 m with 50-µm fiber
 - \circ 250 m with 62.5-µm fiber
- □ 1300 nm used in FDDI but more expensive
 - Higher eye safety limits
 - Better Reliability
 - Start with 550 m on 62.5-µm fiber
 - \bigcirc Could be improved to 2 km on 62.5-µm fiber
 - \Rightarrow Needed for campus backbone

The Ohio State University

Media Access Control Issues

- **Carrier Extension**
- □ Frame Bursting
- Buffered Distributor

The Ohio State University

Buffered Distributor

- □ All incoming frames are buffered in FIFOs
- CSMA/CD arbitration inside the box to transfer frames from an incoming FIFO to all outgoing FIFOs
- Previous slides were half-duplex. With buffered distributor all links are full-duplex with frame-based flow control
- Link length limited by physical considerations only

The Ohio State University

- □ July 1997: Working Group Ballot
- □ March 1998: Approval

Status

- On Schedule
- □ First draft reviewed in January 97
- □ Fourth draft was issued in December'97
- 1000Base-X: Gigabit Ethernet based on Fiber Channel Phy
- □ Phy modified for 1000 Mbps operation
- Phy modified for ISO 11801 standard for premises cabling ⇒ 550 m intra-building backbone runs ⇒ 1300-nm lasers on 62.5-µm multimode fiber 850-nm lasers on 62.5-µm fiber ok for 300 m

The Ohio State University

1000Base-X

- □ 1000Base-LX: 1300-nm <u>laser</u> transceivers
 - 2 to 550 m on 62.5-μm or 50-μm multimode, 2 to 3000 m on 10-μm single-mode
- □ 1000Base-SX: 850-nm <u>laser</u> transceivers
 - \circ 2 to 300 m on 62.5-µm, 2 to 550 m on 50-µm. Both multimode.
- □ 1000Base-CX: Short-haul copper jumpers
 - 25 m 2-pair shielded twinax cable in a single room or rack.

Uses 8b/10b coding \Rightarrow 1.25 Gbps line rate

1000Base-T

- □ 100 m on 4-pair Cat-5 UTP
 - Network diameter of 200 m
 - Requires new coding schemes
 - Under development.
 - New PAR approved in March 1997
 - 802.3ab task force

Design Parameter Summary

Parameter	10 Mbps	100 Mbps	1 Gbps
Slot time	512 bt	512 bt	4096 bt
Inter Frame Gap	9.6 µs	0.96 µs	0.096 µs
Jam Size	32 bits	32 bits	32 bits
Max Frame Size	1518 B	1518 B	1518 B
Min Frame Size	64 B	64 B	64 B
Burst Limit	N/A	N/A	8192 B

 \Box bt = bit time

ATM vs Gb Ethernet

Issue	ATM	Gigabit Ethernet
Media	SM Fiber, MM	Mostly fiber
	Fiber, UTP5	
Max Distance	Many miles	260-550 m
	using SONET	
Data	Need LANE,	No changes
Applications	IPOA	needed
Interoperability	Good	Limited
Ease of Mgmt	LANE	802.3Q VLANs
QoS	PNNI	802.1p (Priority)
Signaling	UNI	None/RSVP (?)
Traffic Mgmt	Sophisticated	802.3x Xon/Xoff
The Ohio State University	-	Raj Jai

References

- For a detailed list of references, see <u>http://www.cis.ohio-state.edu/~jain/</u> <u>refs/gbe_refs.htm</u>
- "Media Access Control (MAC) Parameters, Physical Layer Repeater and Management Parameters for 1000 Mb/s Operation," IEEE Draft P802.3z/D4, December 22, 1997.

References (Cont)

- **Email Reflector:**
 - stds-802-3-hssg@mail.ieee.org
 - To join send email to majordomo@mail.ieee.org
 - o subscribe stds-802-3-hssg@mail.ieee.org <your email address>
- **Given Site:**

ftp://stdsbbs.ieee.org/pub/802_main/802.3/gigabit

Gigabit Ethernet Consortium http://www.gigabit-ethernet.org