Generalized	
Fairness	
Raj Jain	
Raj Jain is now at Washington University in Saint Louis	
Jain@cse.wustl.edu http://www.cse.wustl.edu/~jain/	
The Ohio State University	Raj Jain

1

Generalized Fairness

- Real-time applications need non-zero Minimum Cell Rate (MCR)
- In TM4, Distribution of excess bandwidth (fairness) is implementation specific.
- □ TM4.0 has five examples of fair distribution
- We have shown that two of the examples are not meaningful and have proposed a sixth example that is a superset of the remaining three definitions
- We developed a switch algorithm that implements the proposed definition

Pricing Function

- T = Small time interval, W = Number of bits
 R = Average rate W/T
- □ Cost C = f (W,R). If C is restricted to continuous differentiable functions of type: $C = \sum_{ij} a_{ij} W^i R^j$
- □ For <u>all</u> values of W and R:

•
$$C \ge 0$$
 $\partial C/\partial W \ge 0$ $\partial C/\partial R \ge 0$

- ∂ (C/W)/ ∂ W ≤ 0 [Economy of Scale]
- ∂(C/R)/∂R ≤ 0 [Economy of Scale]
- □ The <u>only</u> function that satisfies all 5 conditions is:

$$C = a_{00} + a_{10}W + a_{01}R + a_{11}WR$$

The Ohio State University

A Simple Pricing Fn

- □ f() is non-decreasing w.r.t to W
 f() is non-increasing w.r.t to T ⇒ non-decreasing w R
- A simple function satisfying these requirements is:
 C = c + w W + r R
 - Here, c = Fixed cost per connectionw = Cost per bit (How much)r = Cost per Mbps (How fast)
- This cost function implies that the excess bandwidth should be allocated using the proposed generalized fairness function

TM4.0 Definitions

- 1. B(i) = B/n
- 2. B(i) = MCR(i) + (B-M)/n
- 3. B(i) = Max{MCR(i), Max-Min Share}
- 4. B(i) = B*(MCR(i)/M)
- 5. B(i) = w(i)*B/Sum(w(j))
- Definition 5 does not always guarantee MCR
- Definition 3 may result in total of fair share being more than the capacity
- Notation: n = # of active VCs bottlenecked here B = Bandwidth available for the bottlenecked VCs The Ohio State University MCR(I) Raj Jain

General Definition

G Fair Share

$$B(i) = MCR(i) + \frac{w(i) (B - M)}{\sum_{i=1,n} w(j)}$$

□ This definition is a superset of 1, 2, 4 in TM4.0

- □ Always ensures MCR
- If all vendors implement the generalized fairness, the network manager can select network-wide their desired fairness criteria by appropriately setting weights.

Mapping to TM 4.0

$$\Box$$
 w(i) = MCR(i):

$$B(i) = MCR(i) + (B-M) MCR(i) / M$$

$$= B* (MCR(i)/M)$$

This is Definition 4 (Proportional to MCR)