Enhanced MILSA Architecture for Naming, Addressing, Routing and Security Issues in the Next Generation Internet

Jianli Pan, Subharthi Paul, <u>Raj Jain</u> Washington University in Saint Louis

jain@cse.wustl.edu

Mic Bowman Xiaohu Xu Shanzhi Chen

Intel Corporation Huawei Technologies BUPT, China

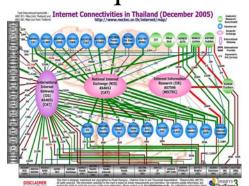
Presentation at ICC 2009, June 16, 2009, Dresden, Germany

These slides and Audio/Video recordings of this talk are at: http://www.cse.wustl.edu/~jain/papers/emilsa.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

MILSA=Mobility and Multi-homing Supporting Identifier-Locator Split Architecture


- 1. Internet 3.0 and our project
- 2. Problems with the current Internet
- 3. Our proposed solution: MILSA
- 4. Enhancements to MILSA

Internet 3.0: Next Generation Internet

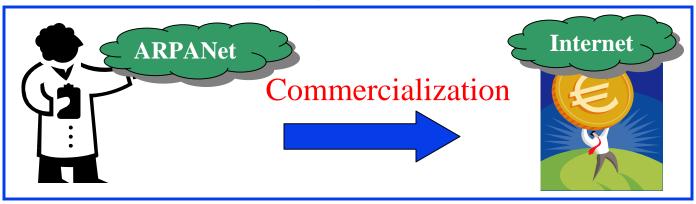
- □ Internet 3.0 is the name of the Washington University project on the Future Internet (inspired by NSF's FIND and GENI)
- Project supported by Intel and Huawei
- Named along the lines of "Web 2.0"
- Goal 1: Develop a *clean slate architecture* to overcome limitations of the current Internet
- □ Goal 2: Develop an <u>incremental approach</u> to implement the architecture

Internet Generations

- □ **Internet 1.0** (1969 1989) Research project
 - > RFC1 is dated April 1969.
 - > ARPA project started a few years earlier
 - > IP, TCP, UDP
 - > Mostly researchers
 - > Industry was busy with proprietary protocols: SNA, DECnet, AppleTalk, XNS
- □ Internet 2.0 (1989 Present) Commerce ⇒ new requirements
 - > Security RFC1108 in 1989
 - > NSFnet became commercial
 - > Inter-domain routing: OSPF, BGP,
 - > IP Multicasting
 - Address Shortage IPv6
 - > Congestion Control, Quality of Service,...

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

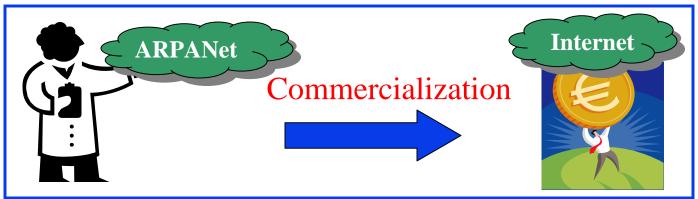

©2009 Raj Jain

HOST

IMP

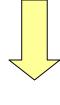
UCHA

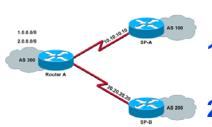
Problems of Current Internet


Security

- 1. Trusted ⇒ Un-trusted
- 2. Control, management, and data path intermixed
- 3. Perimeter based.
- 4. Difficult to represent organizational, administrative hierarchies and relationships.

http://www.cse.wustl.edu/~jain/papers/emilsa.htm


Problems of Current Internet



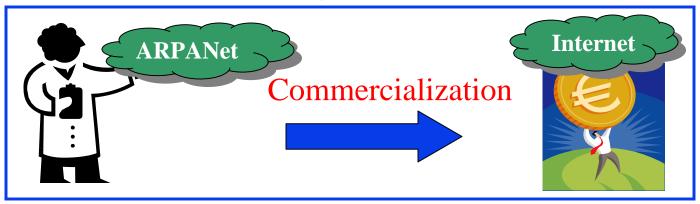
Mobility

Multi-homing

Two type addresses

PI: Provider Independent

PA: Provider Aggregatable

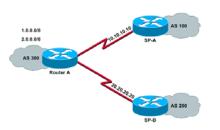

- 1. Multi-homing is Pl based
- Easy for end-site, but put high burden to the routing system

©2009 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

Problems of Current Internet

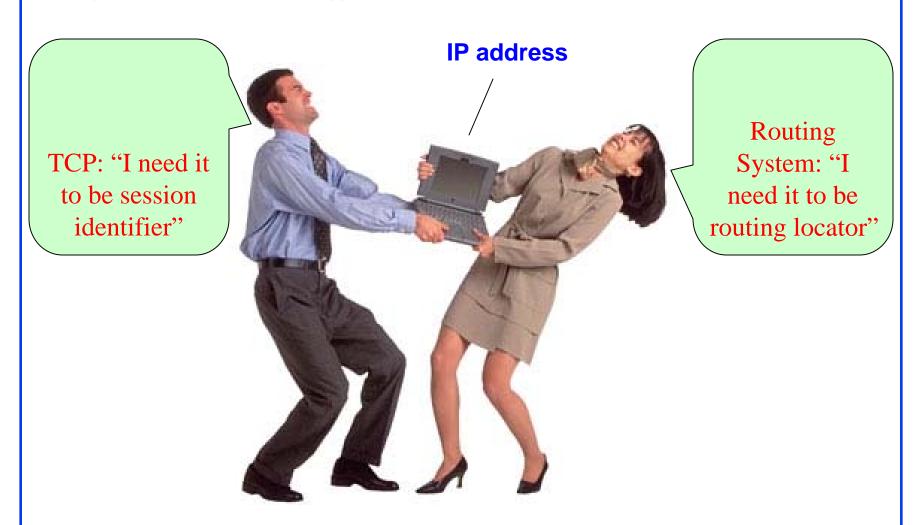


Mobility

Multi-homing

White Holling

Scalability
Traffic Engg
Renumbering


See our Milcom 2006 Paper

©2009 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

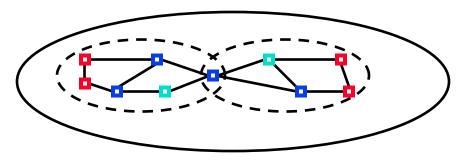
Key Problem: Overloaded Semantics of IP Addresses

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

Physical vs Logical Connectivity

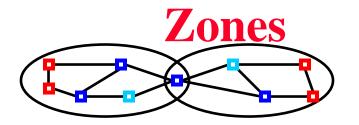
- Physically and logically connected:All computers in my lab
 - = Private Network,Firewalled Network
- Physically disconnected but logically connected:My home and office computers
- Physically connected but logically disconnected: Passengers on a plane,
 Neighbors, Conference attendees sharing a wireless network, A visitor



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

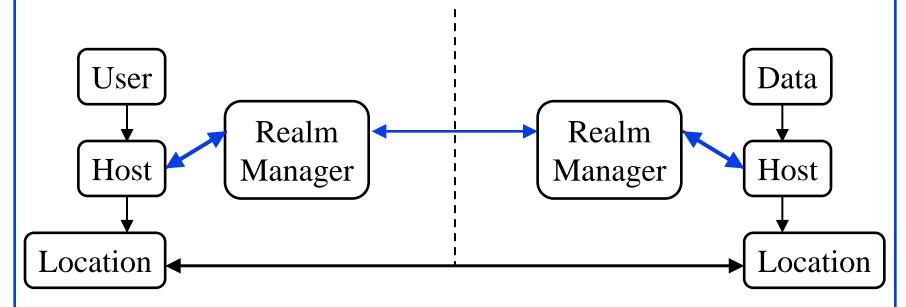
Realms



- Object names and Ids are defined within a realm
- □ A realm is a **logical** grouping of objects under an administrative domain
- □ The Administrative domain may be based on Trust Relationships
- ☐ A realm represents an organization
 - > Realm managers set policies for communications
 - > Realm members can share services.
 - > Objects are generally members of multiple realms
- □ Realm Boundaries: Organizational, Governmental, ISP, P2P,...

Realm = Administrative Group

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/papers/emilsa.htm

- □ Address of an object indicates its *physical attachment point*
- Networks are organized as a set of *zones*
- Zones are physical grouping of objects based on connectivity. Does not imply trust.

Zonal Hierarchy = Network Structure

Id-Locator Split Architecture (MILSA)

- □ Realm managers resolve current location for a given host-ID ⇒ Provides privacy and organizational control
- □ Allows mobility, multi-homing
- □ Ref: Our Globecom 2008 paper [3]

MILSA: Key Features 1

□ Hierarchical URI-like Identifiers (HUI): Example

"Education. WUSTL. US. Mail. John. {Hashed key}"

Type code	Org code	Country code	App. code	End-host code	Hashed code
120 hita					
← 128 bits —					

- □ HUI can have same length as IPv6 address for transition benefit
- □ Realm Manager: Realm-Zone Bridging Server (RZBS)
- Provides the ID to locator translation
- □ Trust Relationship: Realm managers belong to a realm and have trust relationships with its clients and higher level realm managers. Set up trust relationship with other realm managers as needed.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

MILSA: Key Features 2

- □ Control and data plane separation:
 Realm manager is used only in the control plane
 (Resolving Names/IDs to locators)
- □ A node can register multiple locators in multiple zones with a realm manager ⇒ Multihoming
- □ Object Delegation:
 A node can register other node or realm manager as proxy ⇒ Allows location privacy

Problems for the Current Internet

- □ Routing scalability
- □ Traffic engineering
- Mobility
- □ Multi-homing
- Renumbering
- Security
- □ Incremental deployment

Ref: [RFC4984] "Report from the IAB Workshop on Routing and Addressing," September 2007

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

Current Proposals

□ Two possible approaches:

"ID/Locator Split"

Pros:

- ⇒ Clear
- ⇒Mobility, Multihoming support
- ⇒ Trust, policy enforcements

Cons:

⇒ Need host modifications

"Core-edge separation"

Pros:

 \Rightarrow No host

Modification

Cons:

- ⇒ Mobility, Multihoming
- ⇒ Trust, policy enforcements

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/papers/emilsa.htm

Current Proposals

- □ "Core-edge separation" mechanisms are to solve the routing scalability problems
 - > *IP-in-IP tunneling*: LISP-ALT, LISP-NERD, APT, IVIP, TRRP, CRIO
 - > PI-PA indirection: SIX/One
 - PI = Provider Independent address
 - PA = Provider Aggregatable address
- □ "Id/Locator Split" trying to solve other different parts of the problem space
 - > HIP (mobility, security), Shim6(multihoming), I3(mobility, multicast), Hi3(mobility, security).

Enhanced MILSA Approach

- □ Hybrid design = Combines *Core-edge separation* and *ID/Locator split*.
 - ⇒ One solution for all problems identified by the routing research group (RRG)
 - > Prevent PI addresses usage for global routing
 - > *ID/Locator split* to gain benefits in mobility, multihoming, renumbering, security, etc.
 - > New *Secure ID system* for naming: two different name spaces for two different purposes (not like currently overloaded IP addresses)
 - > Support for future *integrated service architecture*
 - > Support for *smooth transition* and *incremental deployment*

Hybrid Transition

- Allows coexistence, put the decision to future competence
 - ⇒ reduce investment risk
- Allows evolvement in either direction
- Deploy incrementally, and reduce the global routing table size gradually
- □ Legacy hosts and new hosts coexist and can talk to each other

Ref: Our Globecom paper [3]

Summary

- 1. Internet 3.0 must be designed for commerce
 - ⇒ Must represent multi-organizational structure and policies
- 2. Realm managers in Mobility and multi-homing supporting ID-locator split architecture (MILSA) enforce trust policies while allowing mobility, multi-homing, scalability, ...
- 3. Hybrid transition mechanism allowing both core-edge separation and id-locator split strategies to coexist and transit to either direction in the future
- 4. Incrementally deployable
 - ⇒ Allows reducing the routing table size gradually

References

- 1. Jain, R., "Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation," in Proceedings of Military Communications Conference (MILCOM 2006), Washington, DC, October 23-25, 2006, http://www.cse.wustl.edu/~jain/papers/gina.htm
- 2. Subharthi Paul, Raj Jain, Jianli Pan, and Mic Bowman, "A Vision of the Next Generation Internet: A Policy Oriented View," British Computer Society Conference on Visions of Computer Science, Sep 2008, http://www.cse.wustl.edu/~jain/papers/pona.htm
- 3. Jianli Pan, Subharthi Paul, Raj Jain, and Mic Bowman, "MILSA: A Mobility and Multihoming Supporting Identifier-Locator Split Architecture for Naming in the Next Generation Internet,," Globecom 2008, Nov 2008,

http://www.cse.wustl.edu/~jain/papers/milsa.htm

References (Cont)

■ Xiaohu Xu, Raj Jain, "Routing Architecture for the Next Generation Internet (RANGI)," IRTF RRG Internet Draft, March 2009, http://tools.ietf.org/html/draft-xu-rangi