Wireless Networking: Trends and Issues

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu
A talk given in "CS 131: Computer Science I" Class
October 10, 2008

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/talks/cs131_08.htm

- 1. Recent Networking Developments
- 2. Wireless Networking Trends
- 3. Wireless Networking Challenges
- 4. Recent Wireless Technologies
- 5. Networking Courses at WUSTL

Goal: To get you interested in wireless networking research

Stone Age to Networking Age

Stone, iron, ..., automotive, electricity, telephone, jet plane,..., networks caused a fundamental change in our life style

- No need to get out for
 - > Office
 - > Shopping
 - > Entertainment
 - > Education

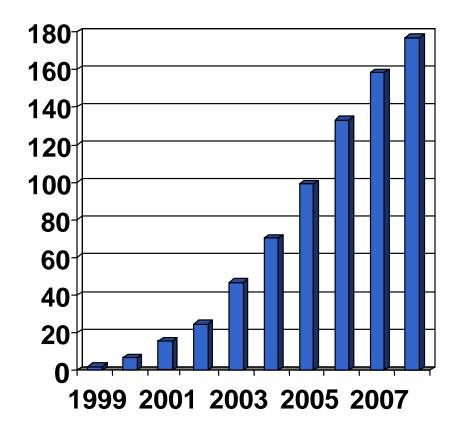
- □ Virtual reality will satisfy your needs for
 - □ Games
 - □ Tourism
 - □ Sex

Recent Networking Developments

- 1. Wireless (WiFi) is ubiquitous (Intel Centrino)
- More Cell phones than POTS.Ratio projected to be 4-to-1 by 2012.
- 3. Wiring more expensive than equipment ⇒ Wireless Access
- 4. Smart Cell phones w PDA, email, video, images⇒ Mobility

Telecom Revenue

	Revenue in Billions						
	2003	2004	2005	2006	2007	2008	Annual
							Growth
Video	0.2	0.3	.05	1.0	1.6	2.5	65.7%
Consumer Broadband	2.8	3.5	4.0	4.2	4.6	4.8	11.4%
Consumer long distance	20.7	18.2	16.0	13.6	11.3	9.2	-15.0%
Business local	26.3	26.7	26.4	26.1	25.8	25.5	-0.6%
Business long distance	26.1	24.5	23.0	21.3	19.7	18.2	-7.0%
Business data	44.8	45.6	46.6	47.1	46.8	45.4	0.3%
Consumer local	46.9	42.2	39.0	36.2	34.0	32.3	-7.25%
Wireless	91.5	108.7	119.2	132.8	144.5	153.6	10.9%
Total	260.7	271.5	277.0	285.0	291.3	294.9	2.5%

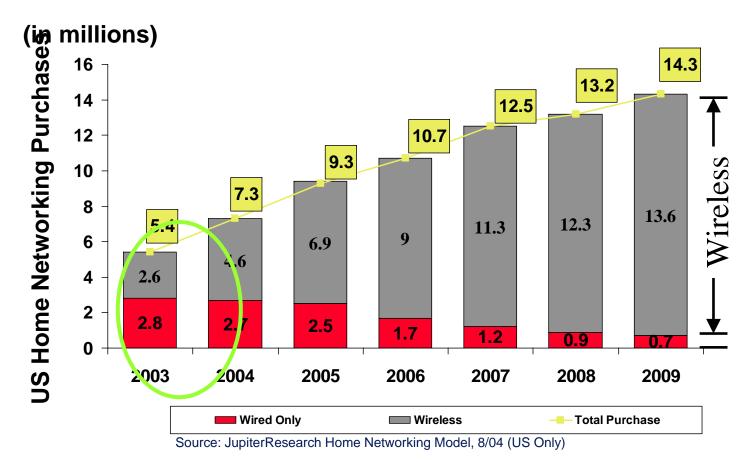

- □ 48% revenues are from wireless.
- □ 26% of revenue from data (vs. voice)
- □ Source: Instat/MDR (Business Week, Feb 28, 2005)

Washington University in St. Louis

CSE131

Wireless Data Connections

North American Wireless Data Connections (Millions)

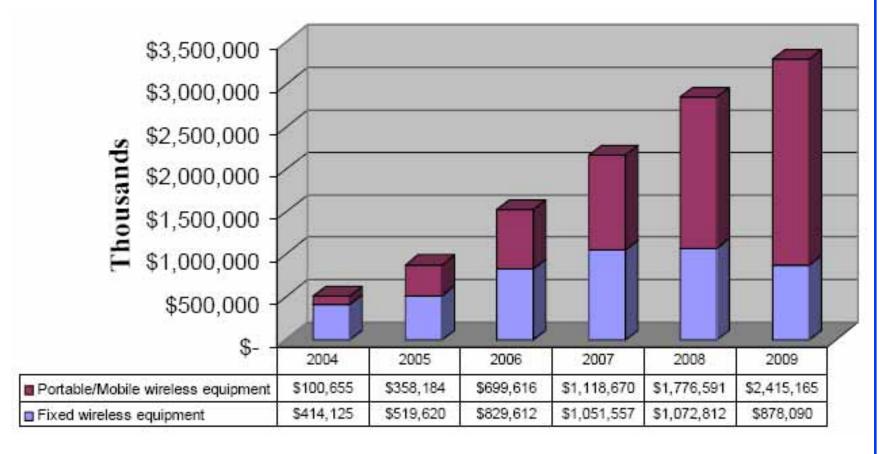


Source: Gartner, "U.S. Wireless Data Market Update, 2004"

Washington University in St. Louis

CSE131

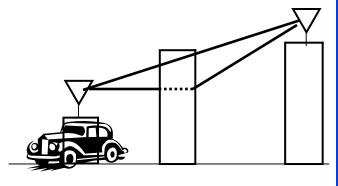
Home Networking Equipment Trends



■ Wireless outsold wired home networking gear for the first time in 2004

Washington University in St. Louis

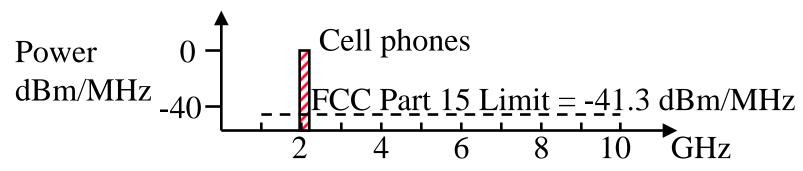
CSE131


Personal Broadband: Fixed vs. Mobile

Source: Skylight Research

Wireless Networking Challenges

- 1. Propagation Issues: Shadows, Multipath
- 2. Interference ⇒ High loss rate, Variable Channel
 - ⇒ Retransmissions and Cross-layer optimizations
- 3. Transmitters and receivers moving at high speed
 - \Rightarrow Doppler Shift
- 4. Low power transmission ⇒ Limited reach 100mW in WiFi base station vs. 100 kW TV tower
- 5. Unlicensed spectrum \Rightarrow Media Access Control
- 6. Limited spectrum ⇒ Limited data rate Original WiFi (1997) was 2 Mbps. New standards allow up to 200 Mbps
- 7. No physical boundary \Rightarrow Security
- 8. Mobility \Rightarrow Seamless handover


Recent Wireless Technologies

- □ Ultra wide-band (UWB)
- □ Multiple-input Multiple-Output (MIMO)
- ☐ High-Speed Metro Wireless

Washington University in St. Louis

CSE131

Ultra-Wideband (UWB)

- US Federal Communications Commission (FCC) rules restrict the maximum noise generated by a wireless equipment
- UWB uses signals below the allowed noise level but uses 500 MHz to 10 GHz of frequency spectrum ⇒ Ultra-wide band
- □ FCC approved UWB operation in 2002
 - > Between 3.1GHz and 10.6GHz
 - > More than 500 MHz bandwidth
- \square High-speed over short distances \Rightarrow Wireless USB

Washington University in St. Louis

CSE131

Advantages of UWB

- □ Shares spectrum with other applications
- Large bandwidth
- Low probability of intercept and detection
- Resistance to jamming
- Superior penetration properties at low frequency spectrum
- □ Simple transceiver architecture. All digital. Low cost
- □ Very low energy consumption: Good Watts/Mbps
- ☐ Line of sight not required. Passes through walls.
- Sub-centimeter resolution allows precise motion detection. Track high-value assets

Washington University in St. Louis

CSE131

UWB Products (Cont)

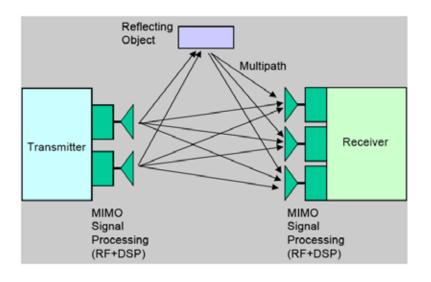
Belkin Wireless USB

Toshiba UWB Docking Station

IMEC UWB Chip

Cell phone with Infineon UWB Washington University in St. Louis

LeCroy UWB Protocol Analyzer



Haier's UWB-based HDTV Media Server

2. MIMO

- Multiple Input Multiple Output
- Simultaneous reception or transmission of multiple streams

2x3

802.11n High-Throughput WiFi

- □ Uses multiple input multiple output antenna (MIMO)
- Data rate and range are enhanced by using spatial multiplexing (N antenna pairs) plus antenna diversity
- □ Up to 200 Mbps
- □ Linksys, Belkin, D-Link, Netgear have pre-11 wireless routers

Washington University in St. Louis

CSE131

Cantenna

- □ 13,000 Free WiFi access nodes and growing
- 12db to 12db can-to-can shot can carry an 11Mbps link well over ten miles
- □ Ref: http://www.netscum.com/~clapp/wireless.html

Washington University in St. Louis

CSE131

Metropolitan High-Speed Wireless: WiMAX Non Line of Sight Point to Multipoint Point to Point **MTU** Backhaul Telco Core Congested Rural Areas Areas Washington University in St. Louis **CSE131** ©2008 Raj Jain

IEEE 802.16 (WiMAX): Key Features

- WiMAX = Wireless Interoperability for Microwave Access ⇒ Industry group for interoperability
- □ Up to 50 km or Up to 70 Mbps.
- □ Data rate vs Distance trade off w adaptive modulation.
 - \Rightarrow High rate near the tower.
 - Lower as distance increases
- □ Offers non-line of site (NLOS) operation
- ☐ Hundreds of simultaneous sessions per channel
- Allows mobility
- □ Robust Security

Washington University in St. Louis

CSE131

Status of WiMAX

- WiBro service started in Korea in June 2006.
- □ Service available in Bangalore, India since 2007.
- □ Sprint-Nextel in 2.3/2.5 GHz with equipment supplied by Intel, Motorola, Samsung, Nokia, and LG.
 Initial deployment in Washington DC and Chicago (Sept 2008)
- More than 200 operators have announced plans for WiMAX
- About half are already trialing or have launched pre-WiMAX
- Two dozen networks in trial or deployed in APAC
- ☐ Intel has developed a multi-band WiMAX/WiFi chipset In laptops before the end of this year

Sample WiMAX Subscriber Stations

Alvarion

Airspan

Axxcelera

Siemens

Aperto

Redline

SR Telecom

Telsima

Washington University in St. Louis

CSE131

Cavemen of 2050 Washington University in St. Louis CSE131 ©2008 Raj Jain

Networking Courses at WUSTL

- 1. CSE 473: Introduction To Computer Networks
- 2. CSE 471T: Communications Theory And Systems
- 3. CSE 521S: Wireless Sensor Networks
- 4. CSE 570A: Reinventing The Internet
- 5. CSE 571S: Network Security
- 6. CSE 572S: Signaling And Control In Communication Networks
- 7. CSE 573S: Protocols For Computer Networks
- 8. CSE 574S: Advanced Topics In Networking (Wireless Networks)
- 9. CSE 577M: Design And Analysis Of Switching Systems
- 10. CSE 578A: Multimedia Computing And Networking
- 11. CSE 7703: Research Seminar On Networking

Overall Summary

- 1. Wireless is the major source of carrier revenue
 - ⇒ Significant growth in Wireless networking
- 2. UWB uses a wide spectrum by keeping the signal level below the allowed noise floor
- 3. MIMO uses multiple antennas for high throughput Used in high-throughput WiFi
- 4. WiMAX with metro-wide wireless access is here
- 5. Working on gigabit wireless technologies

References

- Audio/Video recordings and podcasts of several networking classes are available:
 - CSE 473: Introduction to Computer Networks, http://www.cse.wustl.edu/~jain/cse473-05/index.html
 - CSE 571S: Network Security, http://www.cse.wustl.edu/~jain/cse571-07/index.html
 - CSE 574S: Wireless Networks, http://www.cse.wustl.edu/~jain/cse574-08/index.html

Washington University in St. Louis

CSE131