Issues in Traffic	
Management on	
Satellite ATM	
Networks	
Raj Jain	
Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu <u>http://www.cse.wustl.edu/~jain/</u>	
The Ohio State University	Raj Jain

1

- □ Why ATM?
- □ ATM Service Categories: ABR and UBR
- □ Binary and Explicit Feedback
- □ ABR Vs UBR
- □ 4 Ways to improve ABR over Satellites
- □ 4 Ways to improve UBR over Satellites

Why ATM?

- □ ATM vs IP: Key Distinctions
 - Traffic Management: Explicit Rate vs Loss based
 - Signaling: Coming to IP in the form of RSVP
 - PNNI: QoS based routing
 - Switching: Coming soon to IP
 - Cells: Fixed size or small size is not important

Service Categories

- ABR (Available bit rate):
 Source follows network feedback.
 Max throughput with minimum loss.
- **UBR** (Unspecified bit rate):
 - User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.
- □ CBR (Constant bit rate): User declares required rate. Throughput, delay and delay variation guaranteed.
- □ VBR (Variable bit rate): Declare avg and max rate.

ort-VBR (Real-time): Conferencing.

Max delay guaranteed.

o nrt-VBR (non-real time): Stored video.

The Ohio State University

Our Goal

- Ensure that the new ATM Forum TM 4.0/5.0 specs are "Satellite-friendly"
- □ There are no parameters or requirement that will perform badly in a long-delay satellite environment
- Users can use paths going through satellite links without requiring special equipment
- Develop optimal solutions for satellite networks

This work is sponsored by NASA Lewis Research Center.

The Ohio State University

- □ DECbit scheme in many standards since 1986.
- Forward explicit congestion notification (FECN) in Frame relay
- Explicit forward congestion indicator (EFCI) set to 0 at source. Congested switches set EFCI to 1
- Every nth cell, destination sends an resource management (RM) cell to the source The Ohio State University

- □ Proposed in July 1994
- □ Sources send one RM cell every n cells
- □ The RM cells contain "Explicit rate"
- Destination returns the RM cell to the source
- □ The switches adjust the rate down
- □ Source adjusts to the specified rate

Why Explicit Rate Indication?

- Longer-distance networks
 - \Rightarrow Can't afford too many round-trips
 - \Rightarrow More information is better
- Rate-based control
 - \Rightarrow Queue length = Δ Rate $\times \Delta$ Time
 - \Rightarrow Time is more critical than with windows

4 Ways to Improve ABR over Satellite

 Increase the limit on the number of outstanding cells before decreasing ⇒ Large TBE The size of was increased from 8 bit to 24 bit to

accommodate satellite paths.

- 2. Use larger increase factor \Rightarrow RIF=1 \Rightarrow Fast transient Response
- 3. Implement backward congestion notification (BECN)
- 4. Implement Virtual Source/Virtual Destination

Internet Protocols over ATM

- ATM Forum has designed ABR service for data
- □ UBR service provides no feedback or guarantees
- Internet Engineering Task Force (IETF) prefers UBR for TCP

Policies: Results

- In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK). Different variations of increase/decrease have little impact due to small window sizes.
- In satellite networks, end-system improvements have more impact than switch-based improvements
- □ FRR hurts in satellite networks.
- Fairness depends upon the switch drop policies and not on end-system policies

The Ohio State University

Policies (Continued)

- □ In Satellite networks:
 - SACK helps significantly
 - Switch-based improvements have relatively less impact than end-system improvements
 - Fairness is not affected by SACK
- □ In LANs:
 - Previously retransmitted holes may have to be retransmitted on a timeout
 - \Rightarrow SACK can hurt under extreme congestion.

Guaranteed Frame Rate (GFR)

- □ UBR with minimum cell rate (MCR) \Rightarrow UBR+
- □ Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based.
 All cells of the frame have CLP =0 or CLP =1
- All frames below MCR are given CLP =0 service.
 All frames above MCR are given best effort
 (CLP =1) service.
 Raj Jain

Guaranteed Rate Service

Guaranteed Rate (GR): Reserve a small fraction of bandwidth for UBR class.

GR	GFR
per-class reservation	per-VC reservation
per-class scheduling	per-VC accounting/scheduling
No new signaling	Need new signaling
Can be done now	In TM4+

Guaranteed Rate: Results

- Guaranteed rate is helpful in WANs.
- For WANs, the effect of reserving 10% bandwidth for UBR is more than that obtained by EPD, SD, or FBA
- □ For LANs, guaranteed rate is not so helpful. Drop policies are more important.
- For Satellites, end-system policies seem more important.

Problem in TCP Implementations

- Linear Increase in Segments: CWND/MSS = CWND/MSS + MSS/CWND
- □ In Bytes: CWND = CWND + MSS*MSS/CWND
- □ All computations are done in integer
- If CWND is large, MSS*MSS/CWND is zero and CWND does not change. CWND stays at 512*512 or 256 kB.

Solutions

Solution 1: Increment CWND after N acks (N > 1) CWND = CWND + N*MSS*MSS/CWND

- □ Solution 2: Use larger MSS on Satellite links such that MSS*MSS > CWND. MSS ≥ Path MTU.
- **Solution 3**: Use floating point
- Recommendation: Use solution 1. It works for all MSSs.

4 Ways to Improve UBR over Satellites

- 1. Implement "Selective Acknowledgement" in endsystems
- 2. Disable "Fast retransmit and recovery" in end-systems
- 3. Reserve a small fraction of bandwidth for UBR in the switches
- 4. Fix slow start implementations in end-systems to avoid errors due to integer arithmetic

Binary feedback too slow for rate control. Especially for satellites. ER switches provide much better performance than EFCI.

Summary

 ABR service required for longdelay or high-speed networks.
 UBR+ may be OK for LANs but not for long delay paths.

The Ohio State University

Summary (Cont)

- Implement VS/VD, BECN, RIF=1, TBE=Large to improve ABR over satellites
- Implement SACK, Disable FRR, reserve bandwidth for UBR, and correct TCP implementations to improve UBR over satellites.

Our Contributions and Papers

- All our contributions and papers are available on-line at <u>http://www.cis.ohio-state.edu/~jain/</u>
- □ See Recent Hot Papers for tutorials.

