Traffic Management of Internet Protocols over ATM

Raj Jain

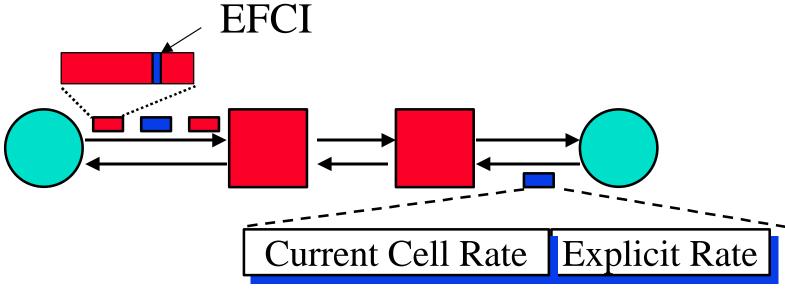
Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

- □ Why ATM?
- □ ATM Service Categories: ABR and UBR
- Binary and Explicit Feedback
- □ ABR Vs UBR
- □ TCP/IP over UBR
- □ ATM Research at OSU

The Ohio State University


Raj Jain

2

Why ATM?

- □ ATM vs IP: Key Distinctions
 - Traffic Management:
 Explicit Rate vs Loss based
 - Signaling: Coming to IP in the form of RSVP
 - PNNI: QoS based routing
 - Switching: Coming soon to IP
 - Cells: Fixed size or small size is not important

- □ Binary: Explicit forward congestion indication (EFCI) bit in the cell header set by congested switches.

 Based on DECbit scheme.
- □ Explicit Rate: Sources send one RM cell every n cells. The switches adjust the explicit rate field down.

Why Explicit Rate Indication?

- Longer-distance networks
 - ⇒ Can't afford too many round-trips
 - ⇒ More information is better
- Rate-based control
 - \Rightarrow Queue length = \triangle Rate $\times \triangle$ Time
 - ⇒ Time is more critical than with windows

Internet Protocols over ATM

- □ ATM Forum has designed ABR service for data
- □ UBR service provides no feedback or guarantees
- Internet Engineering Task Force (IETF) prefers UBR for TCP

ABR vs UBR

ABR

Queue in the source

Pushes congestion to edges

Good if end-to-end ATM

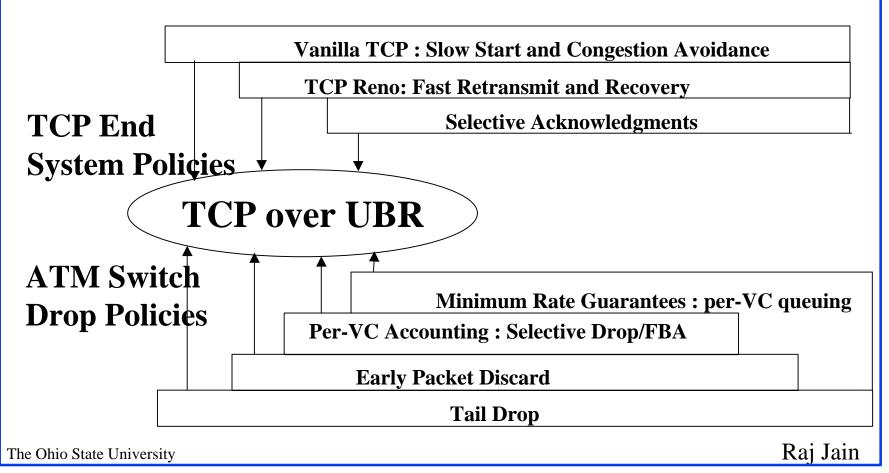
Fair

Works for all protocols

The Ohio State University

UBR

Queue in the network


No backpressure

Same end-to-end or backbone

Generally unfair

Works with TCP

Improving Performance of TCP over UBR

Policies

End-System Policies

		No	FRR	New	SACK +
		FRR		Reno	New
					Reno
No					
EPD					
	Plain				
	EPD				
EPD	Selective				
	Drop				
	Fair Buffer				
	Allocation				

The Ohio State University

Switch Policies

Policies: Results

- □ In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK). Different variations of increase/decrease have little impact due to small window sizes.
- □ In large bandwidth-delay networks, end-system improvements have more impact than switch-based improvements
- □ FRR hurts in large bandwidth-delay networks.

The Ohio State University

Raj Jain

13

Policies (Continued)

- □ Fairness depends upon the switch drop policies and not on end-system policies
- ☐ In large bandwidth-delay networks:
 - SACK helps significantly
 - Switch-based improvements have relatively less impact than end-system improvements
 - Fairness is not affected by SACK
- ☐ In LANs:
 - Previously retransmitted holes may have to be retransmitted on a timeout
 - \Rightarrow SACK can hurt under extreme congestion.

The Ohio State University

Guaranteed Frame Rate (GFR)

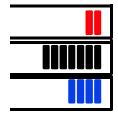
- □ UBR with minimum cell rate (MCR)
 - \Rightarrow UBR+
- ☐ Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based.
 All cells of the frame have CLP =0 or CLP =1
 - All frames below MCR are given CLP =0 service.
 All frames above MCR are given best effort
 (CLP =1) service.

The Ohio State University

Guaranteed Rate Service

□ Guaranteed Rate (GR): Reserve a small fraction of bandwidth for UBR class.

GR	GFR			
per-class reservation	per-VC reservation			
per-class scheduling	per-VC accounting/scheduling			
No new signaling	Need new signaling			
Can be done now	In TM4+			

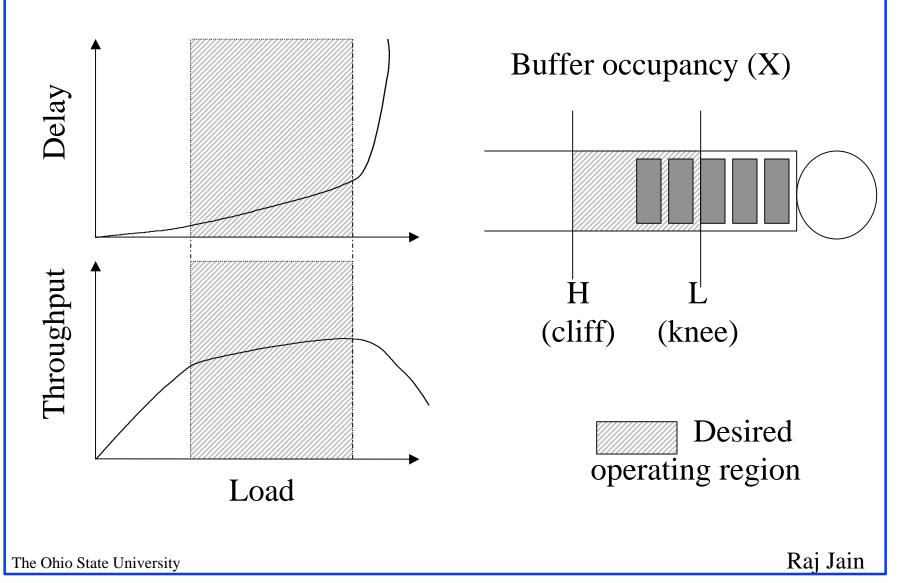

Guaranteed Rate: Results

- Guaranteed rate is helpful in WANs.
- □ For WANs, the effect of reserving 10% bandwidth for UBR is more than that obtained by EPD, SD, or FBA
- □ For LANs, guaranteed rate is not so helpful. Drop policies are more important.

The Ohio State University Raj Jain

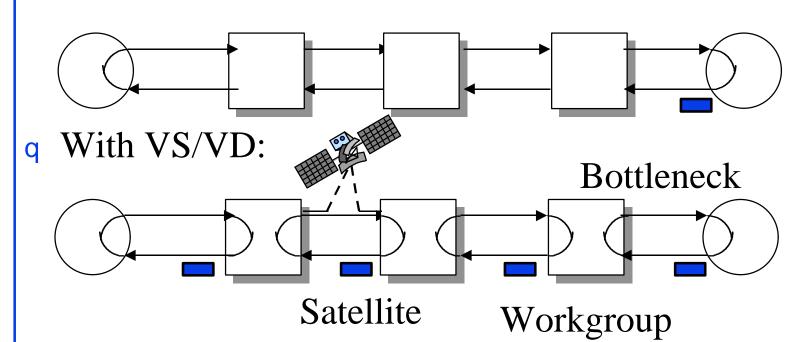
17

GFR: Results



Per-VC Q

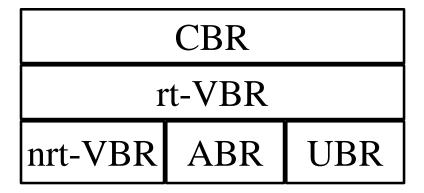
Single FIFO


- Per-VC queuing and scheduling is sufficient for per-VC MCR.
- ☐ FBA and proper scheduling is sufficient for fair allocation of excess bandwidth
- Questions:
 - O How and when can we provide MCR guarantee with FIFO?
- What if each VC contains multiple TCP flows?
 Raj Jain

Distributed Fair Buffer Allocation

VS/VD

■ Without Virtual Source/Virtual Destination:



- Link Switch With VSVD, the buffering is proportional to the delay-bandwidth of the previous loop
 - ⇒ Good for satellite networks

ATM Research at OSU

- □ Traffic Management:
 - ERICA+ Switch Algorithm
 - Internet Protocols over ATM
 - Multi-class Scheduling
- Voice/Video over ATM
- Performance Testing
- □ ATM Test bed: OCARnet

Multi-class Scheduling

- Ensures *no-starvation* for all classes even under overload.
- Each class has an *allocation* = Guaranteed under overload
- \square Some classes need minimum delay \Rightarrow have *priority*.
- Some classes are greedy.

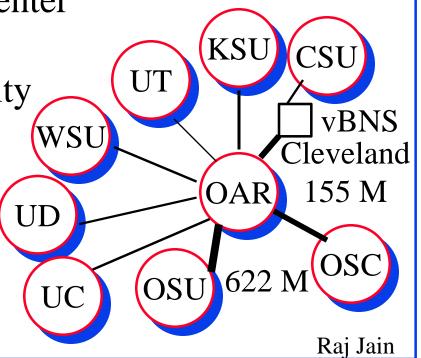
Left-over capacity is *fairly* allocated.

The Ohio State University

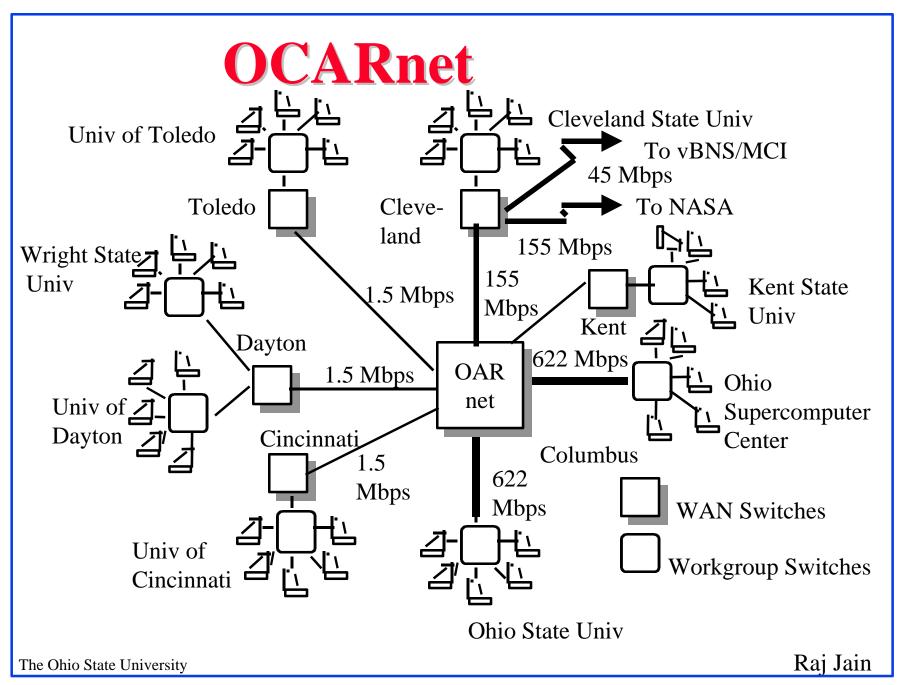
Voice/Video over ATM

- Speech suppression
 - ⇒ Unused bandwidth can be used by data Cannot be used by voice.
- ☐ Hierarchical compression of VideoDifferent users can see different bandwidth video
- Multipoint ABR
- □ Real-time ABR

Real-Time ABR


- Compressed video is VBR.
 VBR is subject to connection denial.
- Compression parameters can be adjusted dynamically
- □ In situations, where reduced service is preferable over connection denial, such as in tactical environments, Video over ABR is preferable over no Video.
- ABR divides the available bandwidth fairly among contending connections
- By proper control, ABR can be designed to reduce delay ⇒ Real-time ABR

OSU National ATM Benchmarking Lab


- Started a new effort at ATM Forum in October 1995
- □ Defining a new standard for <u>frame based</u> performance metrics and measurement methodologies
- We have a measurement lab with the latest ATM testing equipment. Funded by NSF and State of Ohio.
- □ The benchmark scripts can be run by any manufacturer/user in our lab or theirs.
- Modeled after Harvard benchmarking lab for routers

OCARnet

- Ohio Computing and Communications
 ATM Research Network
- Nine-Institution consortium lead by OSU
 - Ohio State University
 - Ohio Super Computer Center
 - OARnet
 - Cleveland State University
 - Kent State University
 - University of Dayton
 - University of Cincinnati
 - Wright State University
 - University of Toledo

The Ohio State University

Summary

- □ Traffic management distinguishes ATM from its competition
- Binary feedback too slow for rate control. ER switches better for high bandwidth-delay paths.
- □ ABR pushes congestion to edges.
 UBR+ may be OK for LANs but not for large bandwidth-delay paths.

Summary (Cont)

- □ Reserving a small fraction of bandwidth for the entire UBR class improves its performance considerably.
- ☐ It may be possible to do GFR with FIFO

The Ohio State University Raj Jain

29

Our Contributions and Papers

■ All our contributions and papers are available on-line at http://www.cis.ohio-state.edu/~jain/

□ See Recent Hot Papers for tutorials.