# Traffic Management of Internet Protocols over ATM

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

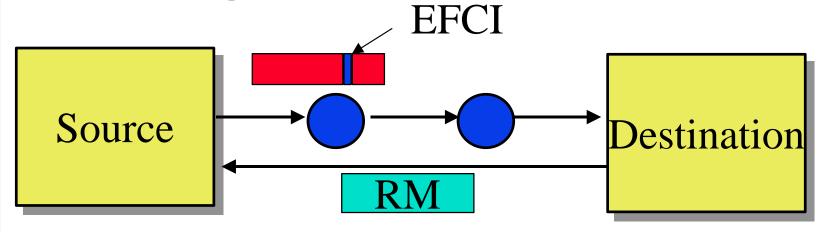
The Ohio State University



- □ Why ATM?
- □ ATM Service Categories: ABR and UBR
- □ Binary and Explicit Feedback
- □ ABR Vs UBR
- □ TCP/IP over ABR
- □ TCP/IP over UBR

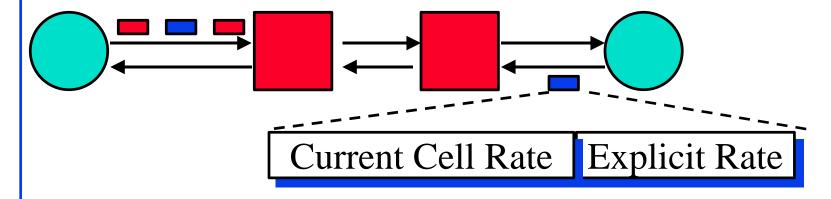
## Why ATM?

- □ ATM vs IP: Key Distinctions
  - Traffic Management:
     Explicit Rate vs Loss based
  - Signaling: Coming to IP in the form of RSVP
  - PNNI: QoS based routing
  - Switching: Coming soon to IP
  - Cells: Fixed size or small size is not important


The Ohio State University Raj Jain

3

#### **Service Categories**


- □ ABR (Available bit rate):
  Source follows network feedback.
  Max throughput with minimum loss.
- □ UBR (Unspecified bit rate):
  User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.
- □ CBR (Constant bit rate): User declares required rate. Throughput, delay and delay variation guaranteed.
- □ VBR (Variable bit rate): Declare avg and max rate.
  - ort-VBR (Real-time): Conferencing. Max delay guaranteed.
  - onrt-VBR (non-real time): Stored video.

### **Binary Rate Scheme**



- □ DECbit scheme in many standards since 1986.
- □ Forward explicit congestion notification (FECN) in Frame relay
- □ Explicit forward congestion indicator (EFCI) set to 0 at source. Congested switches set EFCI to 1
- Every nth cell, destination sends an resource management (RM) cell to the source

#### The Explicit Rate ABR



- Proposed in July 1994
- Sources send one RM cell every n cells
- The RM cells contain "Explicit rate"
- Destination returns the RM cell to the source
- ☐ The switches adjust the rate down
- Source adjusts to the specified rate

## Why Explicit Rate Indication?

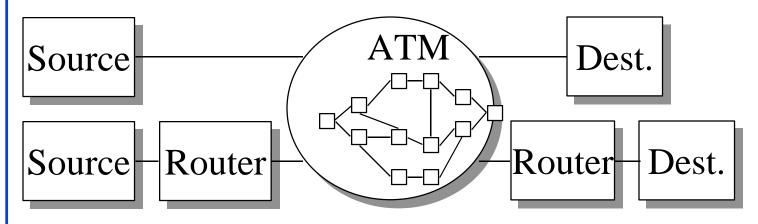
- Longer-distance networks
  - ⇒ Can't afford too many round-trips
  - ⇒ More information is better
- Rate-based control
  - $\Rightarrow$  Queue length =  $\triangle$ Rate  $\times \triangle$ Time
  - ⇒ Time is more critical than with windows

## Internet Protocols over ATM

- □ ATM Forum has designed ABR service for data
- □ UBR service provides no feedback or guarantees
- Internet Engineering Task Force (IETF) prefers UBR for TCP

#### **Observations About ABR**

- ABR performance depends upon the switch algorithm. Assuming *ERICA*.
   (Ref: http://www.cis.ohio-state.edu/~jain/)
- □ No cell loss for *TCP* if switch has buffers  $\approx 4 \times RTT$ .
- No loss for any number of TCP sources w 4 × RTT buffers.
- No loss even with VBR background. W/o VBR, 3×RTT buffers will do.
- Under many circumstances, 1× RTT buffers may do.
- Required buffers depend upon RTT, feedback delay, switch parameters, and characteristics of VBR.


#### **Observations about UBR**

- □ No loss for TCP if Buffers
  - $= \Sigma$  TCP receiver window
- □ Required buffering depends upon number of sources.
- $\square$  Receiver window  $\ge$  RTT for full throughput
- □ Unfairness in many cases.
- □ Fairness can be improved by proper buffer allocation, selective drop policies, and scheduling.
- No starvation ⇒ Lower throughput shows up as increased file transfer times = Lower capacity

Conclusion: UBR may be OK for: LAN, w/o VBR,

Small number of sources, AND cheap implementation

#### **ABR vs UBR**



#### **ABR**

Queue in the source

Pushes congestion to edges

Good if end-to-end ATM

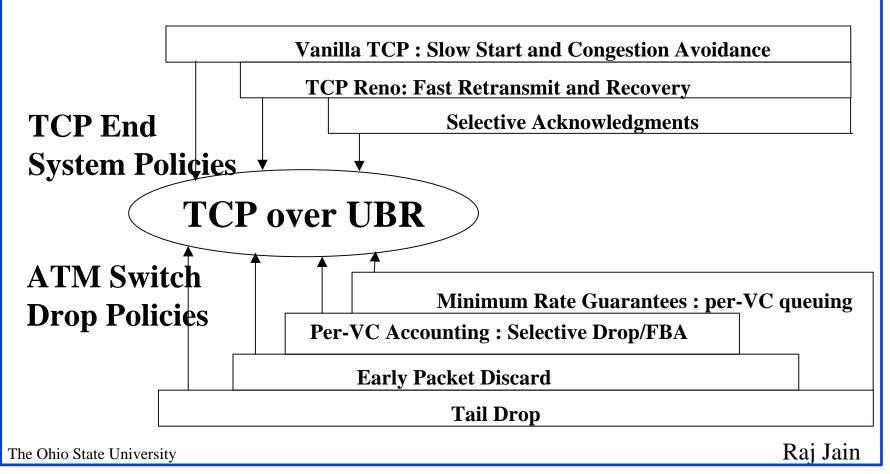
Fair

Good for the provider

The Ohio State University

#### **UBR**

Queue in the network


No backpressure

Same end-to-end or backbone

Generally unfair

Simple for user

## Improving Performance of TCP over UBR



#### **Policies**

#### **End-System Policies**

|                 |     |             | No  | FRR | New  | SACK + |
|-----------------|-----|-------------|-----|-----|------|--------|
|                 |     |             | FRR |     | Reno | New    |
|                 |     |             |     |     |      | Reno   |
| Switch Policies | No  |             |     |     |      |        |
|                 | EPD |             |     |     |      |        |
|                 |     | Plain       |     |     |      |        |
|                 |     | EPD         |     |     |      |        |
|                 | EPD | Selective   |     |     |      |        |
|                 |     | Drop        |     |     |      |        |
|                 |     | Fair Buffer |     |     |      |        |
|                 |     | Allocation  |     |     |      |        |

The Ohio State University

#### **Policies: Results**

- □ In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK). Different variations of increase/decrease have little impact due to small window sizes.
- ☐ In large bandwidth-delay networks, end-system improvements have more impact than switch-based improvements
- □ FRR hurts in large bandwidth-delay networks.

#### **Policies (Continued)**

- □ Fairness depends upon the switch drop policies and not on end-system policies
- □ In large bandwidth-delay networks:
  - SACK helps significantly
  - Switch-based improvements have relatively less impact than end-system improvements
  - Fairness is not affected by SACK
- ☐ In LANs:
  - Previously retransmitted holes may have to be retransmitted on a timeout
    - $\Rightarrow$  SACK can hurt under extreme congestion.

The Ohio State University

# Guaranteed Frame Rate (GFR)

- □ UBR with minimum cell rate (MCR)
  - $\Rightarrow$  UBR+
- ☐ Frame based service
  - Complete frames are accepted or discarded in the switch
  - Traffic shaping is frame based.
     All cells of the frame have CLP =0 or CLP =1
  - All frames below MCR are given CLP =0 service.
     All frames above MCR are given best effort
     (CLP =1) service.

The Ohio State University

#### **Guaranteed Rate Service**

□ Guaranteed Rate (GR): Reserve a small fraction of bandwidth for UBR class.

| GR                    | GFR                          |
|-----------------------|------------------------------|
| per-class reservation | per-VC reservation           |
| per-class scheduling  | per-VC accounting/scheduling |
| No new signaling      | Need new signaling           |
| Can be done now       | In TM4+                      |

#### **Guaranteed Rate: Results**

- Guaranteed rate is helpful in WANs.
- □ For WANs, the effect of reserving 10% bandwidth for UBR is more than that obtained by EPD, SD, or FBA
- □ For LANs, guaranteed rate is not so helpful. Drop policies are more important.

The Ohio State University Raj Jain

22



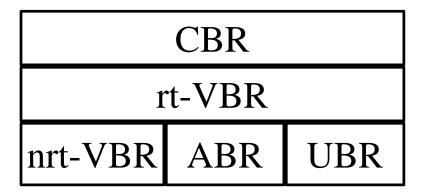
#### **Summary**

- □ Traffic management distinguishes ATM from its competition
- Binary feedback too slow for rate control. ER switches better for high bandwidth-delay paths.
- □ ABR pushes congestion to edges.
   UBR+ may be OK for LANs but not for large bandwidth-delay paths.

# Our Contributions and Papers

□ All our contributions and papers are available on-line at <a href="http://www.cis.ohio-state.edu/~jain/">http://www.cis.ohio-state.edu/~jain/</a>

□ See Recent Hot Papers for tutorials.


#### Thank You!



#### **ATM Research at OSU**

- □ Traffic Management:
  - ERICA+ Switch Algorithm
  - Internet Protocols over ATM
  - Multi-class Scheduling
- Voice/Video over ATM
- Performance Testing
- □ ATM Test bed: OCARnet

#### **Multi-class Scheduling**



- □ Ensures *no-starvation* for all classes even under overload.
- Each class has an *allocation* = Guaranteed under overload
- $\square$  Some classes need minimum delay  $\Rightarrow$  have *priority*.
- Some classes are greedy.

Left-over capacity is *fairly* allocated.

The Ohio State University

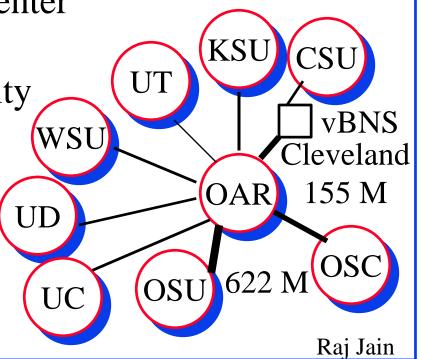
#### Voice/Video over ATM

- Speech suppression
  - ⇒ Unused bandwidth can be used by data Cannot be used by voice.
- ☐ Hierarchical compression of VideoDifferent users can see different bandwidth video
- Multipoint ABR
- □ Real-time ABR

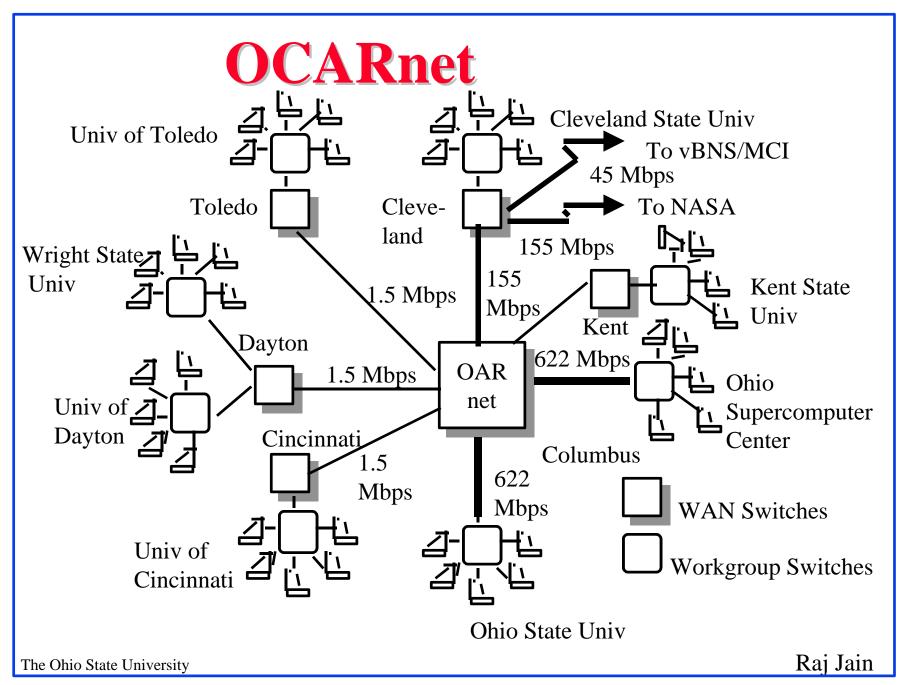
The Ohio State University Raj Jain

28

#### **Real-Time ABR**


- Compressed video is VBR.VBR is subject to connection denial.
- Compression parameters can be adjusted dynamically
- In situations, where reduced service is preferable over connection denial, such as in tactical environments, Video over ABR is preferable over no Video.
- □ ABR divides the available bandwidth fairly among contending connections
- By proper control, ABR can be designed to reduce delay ⇒ Real-time ABR

## OSU National ATM Benchmarking Lab


- Started a new effort at ATM Forum in October 1995
- Defining a new standard for <u>frame based</u> performance metrics and measurement methodologies
- We have a measurement lab with the latest ATM testing equipment. Funded by NSF and State of Ohio.
- □ The benchmark scripts can be run by any manufacturer/user in our lab or theirs.
- Modeled after Harvard benchmarking lab for routers

#### **OCARnet**

- Ohio Computing and Communications ATM Research Network
- Nine-Institution consortium lead by OSU
  - Ohio State University
  - Ohio Super Computer Center
  - OARnet
  - Cleveland State University
  - Kent State University
  - University of Dayton
  - University of Cincinnati
  - Wright State University
  - University of Toledo



The Ohio State University

