TCP/IP over ATM using ABR, UBR, and GFR Services and QoS over IP Issues

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

- □ Why ATM?
- □ ABR: Binary and Explicit Feedback
- □ ABR Vs UBR
- □ TCP/IP over UBR
- □ TCP/IP over GFR
- QoS over IP: IntServ, DiffServ, MPLS

The Ohio State University

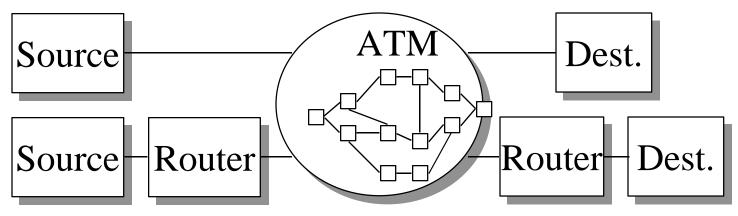
Raj Jain

2

Why ATM?

ATM vs IP: Key Distinctions

- 1. Traffic Management: Explicit Rate vs Loss based
- 2. Signaling: Coming to IP in the form of RSVP
- 3. QoS: PNNI routing, Service categories. Integrated/Differentiated services
- 4. Switching: Coming to IP as MPLS
- 5. Cells: Fixed size or small size is not important



The Ohio State University

Internet Protocols over ATM

- □ ATM Forum has designed ABR service for data
- □ UBR service provides no feedback or guarantees
- Internet Engineering Task Force (IETF) prefers UBR for TCP

ABR vs UBR

ABR

Queue in the source

Pushes congestion to edges

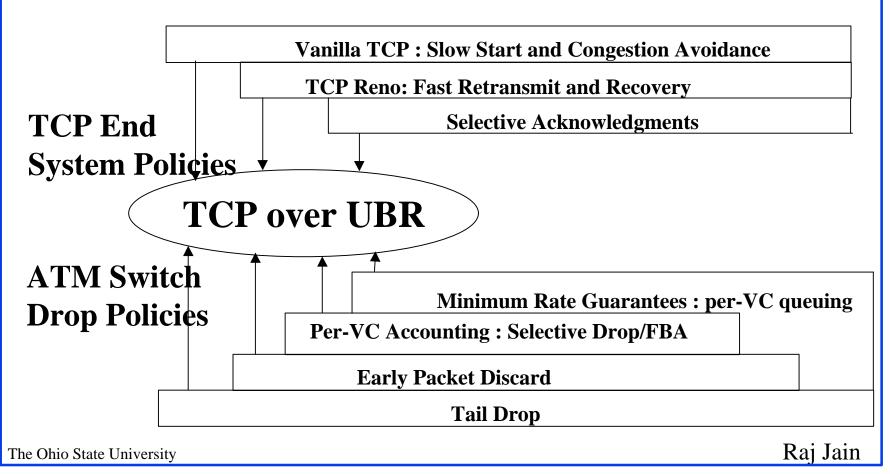
If ATM not end-to-end: intelligent Q mgmt in routers

Works for all protocols

The Ohio State University

UBR

Queue in the network


No backpressure

Same end-to-end or backbone

Works with TCP

Raj Jain

Improving Performance of TCP over UBR

Policies

End-System Policies

		No	FRR	New	SACK +
		FRR		Reno	New
					Reno
No					
EPD					
	Plain				
	EPD				
EPD	Selective				
	Drop				
	Fair Buffer				
	Allocation				

The Ohio State University

Switch Policies

Raj Jain

Policies: Results

- □ In LANs, switch improvements (PPD, EPD, SD, FBA) have more impact than end-system improvements (Slow start, FRR, New Reno, SACK). Different variations of increase/decrease have little impact due to small window sizes.
- □ In large bandwidth-delay networks, end-system improvements have more impact than switch-based improvements
- □ FRR hurts in large bandwidth-delay networks.

The Ohio State University Raj Jain

12

Policies (Continued)

- Fairness depends upon the switch drop policies and not on end-system policies
- □ In large bandwidth-delay networks:
 - SACK helps significantly
 - Switch-based improvements have relatively less impact than end-system improvements
 - Fairness is not affected by SACK
- ☐ In LANs:
 - Previously retransmitted holes may have to be retransmitted on a timeout
 - \Rightarrow SACK can hurt under extreme congestion.

The Ohio State University

Raj Jain

Guaranteed Frame Rate (GFR)

- □ UBR with minimum cell rate (MCR)
 - \Rightarrow UBR+
- ☐ Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based.
 All cells of the frame have CLP =0 or CLP =1
 - All frames below MCR are given CLP =0 service.
 All frames above MCR are given best effort
 (CLP =1) service.

The Ohio State University

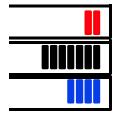
Raj Jain

Guaranteed Rate Service

□ Guaranteed Rate (GR): Reserve a small fraction of bandwidth for UBR class.

GR	GFR			
per-class reservation	per-VC reservation			
per-class scheduling	per-VC accounting/scheduling			
No new signaling	Need new signaling			
Can be done now	In TM4+			

Guaranteed Rate: Results

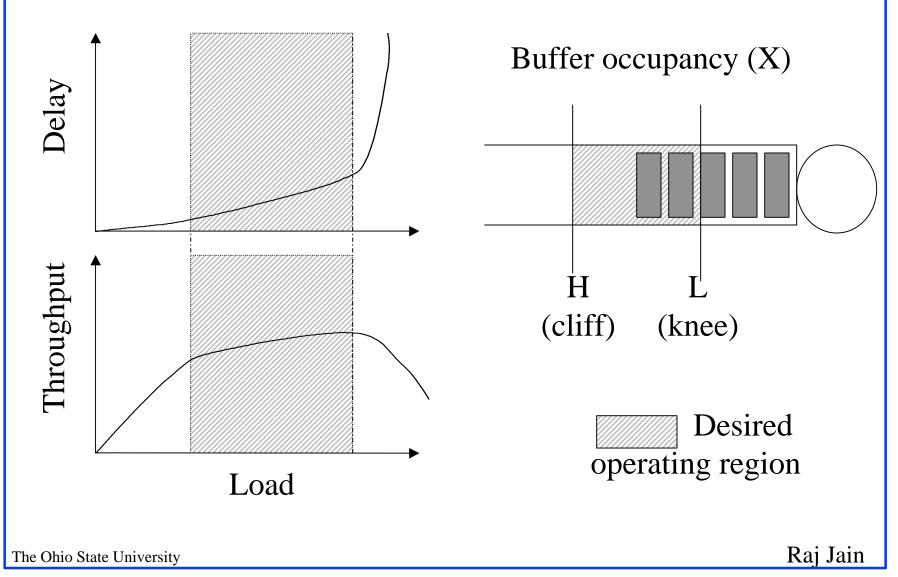

- Guaranteed rate is helpful in WANs.
- □ For WANs, the effect of reserving 10% bandwidth for UBR is more than that obtained by EPD, SD, or FBA
- □ For LANs, guaranteed rate is not so helpful. Drop policies are more important.

The Ohio State University

Raj Jain

16

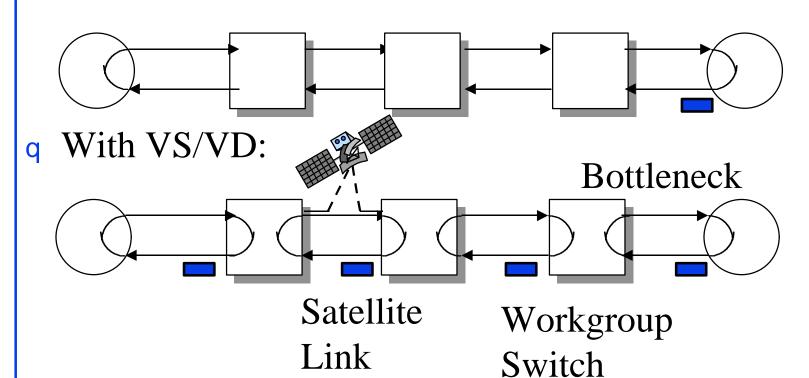
GFR: Results



Per-VC Q

Single FIFO

- Per-VC queuing and scheduling is sufficient for per-VC MCR.
- ☐ FBA and proper scheduling is sufficient for fair allocation of excess bandwidth
- Questions:
 - O How and when can we provide MCR guarantee with FIFO?
- What if each VC contains multiple TCP flows?
 Raj Jain


Differential Fair Buffer Allocation

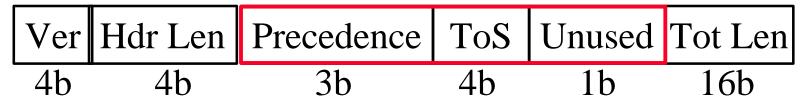
DFBA (contd.) Drop all low priority. Accept Drop all All frames. Drop high priority with probability P() ith VC's Queue (Normalized) 2 3 $X_i(W/W_i)$ X < LDrop all low priority X > HDo not drop high priority Low Threshold L High Threshold H MSS Total Queue X TCP Rate $D \propto$ $RTT \times_{\gamma} P(drop)$ Raj Jain The Ohio State University

VS/VD

■ Without Virtual Source/Virtual Destination:

- q With VSVD, the buffering is proportional to the delay-bandwidth of the previous loop
 - ⇒ Good for satellite networks

Integrated Services and RSVP

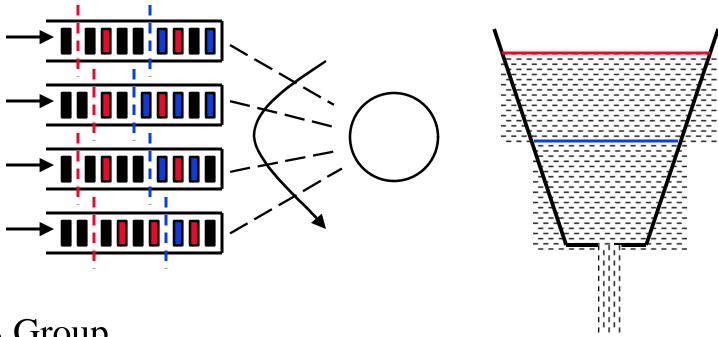

- Best Effort Service: Like UBR.
- □ Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances. Like nrt-VBR or UBR w MCR
- ☐ Guaranteed Service: Like CBR or rt-VBR
 - Firm bound on data throughput and <u>delay</u>.
 - Is not always implementable, e.g., Shared Ethernet.
- □ Resource ReSerVation Protocol: Signaling protocol

Problems with RSVP and Integrated Services

- Complexity: Packet classification, Scheduling
- □ Scalable in number of receivers per flow but Per-Flow State: $O(n) \Rightarrow Not$ scalable with # of flows. Number of flows in the backbone may be large.
 - ⇒ Suitable for small private networks
- Need a concept of "Virtual Paths" or aggregated flow groups for the backbone
- Need policy controls: Who can make reservations? Support for accounting and security.
- □ RSVP does not have negotiation and backtracking

Differentiated Services

- □ IPv4: 3-bit precedence + 4-bit ToS
- Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- □ DS working group formed February 1998
- □ Charter: Define ds byte (IPv4 ToS field)
- □ Per-Hop Behavior: Externally Observable Forwarding Behavior, e.g., x% of link bandwidth, or priority


The Ohio State University

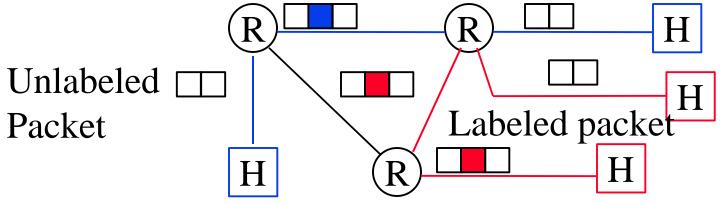
Raj Jain

Expedited Forwarding

- □ Also known as "Premium Service"
- Virtual leased line
- □ Similar to CBR
- Guaranteed minimum service rate
- □ Policed: Arrival rate < Minimum Service Rate
- □ Not affected by other data PHBs
 - ⇒ Highest data priority (if priority queueing)

Assured Forwarding

- □ PHB Group
- Four Classes: Decreasing weights in WFR/WFQ
- □ Three drop preference per class (one rate and two bucket sizes)


Problems with DiffServ

- □ per-hop ⇒ Need at every hopOne non-DiffServ hop can spoil all QoS
- □ End-to-end ≠ Σ per-Hop
 Designing end-to-end services with weighted guarantees at individual hops is difficult.
 Only EF will work.
- QoS is for the aggregate not micro-flows.
 Not intended/useful for end users. Only ISPs.
 - Large number of short flows are better handled by aggregates.

DiffServ Problems (Cont)

- Long flows (voice and video sessions) need perflow guarantees.
- High-bandwidth flows (1 Mbps video) need perflow guarantees.
- □ All IETF approaches are open loop control ⇒ Drop.
 Closed loop control ⇒ Wait at source
 Data prefers waiting ⇒ Feedback
- □ Guarantees ⇒ Stability of paths
 ⇒ Connections (hard or soft)
 Need route pinning or connections.

Multiprotocol Label Switching

- Entry "label switch router (LSR)" attaches a label to the packet based on the route
- Other LSRs switch packets based on labels.
 Do not need to look inside ⇒ Fast.
- □ Labels have local significance
 - ⇒ Different label at each hop (similar to VC #)
- Exit LSR strips off the label

Traffic Engineering Using MPLS

- □ Traffic Engineering = Performance Optimization
 - = Efficient resource allocation, Path splitting
 - ⇒ Maximum throughput, Min delay, min loss
 - ⇒ Quality of service
- □ In MPLS networks: "Traffic Trunks" = SVCs
 Traffic trunks are routable entities like VCs
- Multiple trunks can be used in parallel to the same egress.
- Each traffic trunk can have a set of associated characteristics, e.g., priority, preemption, policing, overbooking

Summary

- □ Traffic management distinguishes ATM from its competition
- □ Binary feedback too slow.ER switches better for high bandwidth-delay paths.
- □ ABR pushes congestion to edges.
 UBR+ may be OK for LANs but not for large bandwidth-delay paths.

Summary (Cont)

- □ Reserving a small fraction of bandwidth for the entire UBR class improves its performance considerably.
- ☐ It may be possible to do GFR with FIFO

The Ohio State University Raj Jain

34

Summary

- Multiple drop preferences does not help data (TCP) or Voice/Video
- Voice/video need multiple leaky bucket rates for layered/scalable coding.
- Need additivity or mathematical aggregatability. CBR (EF) should be the first step for IP.
- □ Excess allocation is useful with closed loop.
 Network/application dynamics ⇒ Need closed loop

The Ohio State University Raj Jain

35

Our Contributions and Papers

■ All our contributions and papers are available on-line at

http://www.cis.ohio-state.edu/~jain/

□ See Recent Hot Papers for tutorials.