Congestion Control in ATM Networks: Recent Results and Open Droblems

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

- □ Seven congestion management functions in ATM
- □ Five service classes
- □ Binary vs explicit rate feedback
- □ ERICA and ERICA+ Switch algorithms
- Outstanding issues

Congestion Control: Our Schemes

- □ 1986: Packet Loss ⇒ Timeout ⇒ Congestion
 ⇒ Slow Start in TCP/IP Networks
- □ 1989: DECbit Scheme:
 One bit in packet ⇒ Reduce/increase

Computing Advertised Rate

- □ Advertised Rate = Capacity/number of VCs
- \Box Underloading VC = Rate < advertised

Advertised rate = $\frac{\text{Capacity} - \Sigma \text{ BW of Underloading VCs}}{\# \text{ of flows} - \# \text{ of underloading flows}}$

- □ If change, go to Step 2
- **Two iterations are sufficient.**
- Switches keep a table of stamped rates of all VCs
- **Order** (n) computation for n VCs

Raj Jain

Innovation 1: Most Recent Info

Use the latest CCR from the forward direction (more recent information) and not that in the reverse RM cell

ABR-Only Systems

□ Most simulations have assumed

- Infinite sources
- □ ABR only

- With ABR only:
 - Link capacity is known
 - Link capacity is fixed
 - Only traffic is random
 - Only traffic has to be measured, predicted, and allocated fairly

The Ohio State University

- □ VBR gets a preferential treatment
- □ ABR gets only left-overs
- ABR capacity is a random variable
 It has to be measured, forecasted, and allocated
- □ Sometimes, there may not be any left-overs
- □ Sometimes, even VBR may be overbooked

A Simple VBR Model

- On for x ms and off for y ms
- □ When on, VBR uses up C_{vbr} bandwidth
- □ In practice, x, y, C_{vbr} are random variables.
 We assumed constants.

Problem with Current Congestion Avoidance Schemes

- Link utilization is 95% or below
 May not be acceptable for high-cost WAN links.
- Queue length is close to 1.
 Not good if available bit rate changes fast

ERICA+: Switch Algorithm

- Available rate = fn(Unused bandwidth, Queue length, Queue drain time goal)
- Rest is similar to ERICA
- □ New Parameters:
 - \Box Queue drain time goal = T₀
 - \Box Queue drain rate = a
 - \Box Queue fill rate = b
 - \Box Capacity allocation for queue control = 20%

Raj Jain

Features (Continued)

- Compatible with current ATM Forum TM agreements
- □ No changes to source operation required
- □ No changes to destination operation required
- □ No changes to RM cell format required
- □ Follows all switch requirements

How Much to Allocate?

- **Two Allocation Philosophies: Pessimistic vs Optimistic**
- **Starting point:** Low vs High
- Going up: Slow vs Fast
- Going down: Slow vs Fast
- **Transient Response time: Slow vs Fast**

- MS Thesis of Anna Charny at MIT under Clark and Jain Presented to ATM Forum in July 1994
- □ Sources send one RM cell every *N* cells
- □ The RM cells contain "Stamped (Explicit) rate" and a "reduced-bit"
- **The switches adjust the rate down and set the reduced bit**
- Destination returns the RM cell to the source
- □ Source adjusts to the specified rate
- Order *n* complexity in switch algorithm. n = # of VCs.

Traffic Management Fns (Cont)

- Feedback Controls: Network tells the source to increase or decrease its load.
 - □ Explicit forward congestion indication (EFCI)
 - □ Explicit rate (ER)
 - □ Backward explicit congestion notification (BECN)

The Ohio State University