

- Seven facts about TCP
- □ Three facts about ATM
- Seven observations about ABR
- □ Seven observations about UBR

Our Quest

- **TCP** has window-based congestion control.
- ABR provides rate-based control, while UBR provides no control.
- $\Box Is TCP + ABR better than TCP + UBR?$

Seven Facts about TCP

- **TCP** successfully avoids congestion collapse.
- **TCP** can automatically fill any available capacity.
- TCP performs best when there is NO packet loss.
 Even a single packet loss can reduce throughput considerably.
- Slow start limits the packet loss but loses considerable time.
 With TCP, you may not lose too many packets but you loose time.
- Bursty losses cause more throughput degradation than isolated losses.
- Fast retransmit/recovery helps in isolated losses but not in bursty losses.
- □ Timer granularity is the key parameter in determining time lost.

The Ohio State University

Three Facts about ATM

These apply to ABR as well as UBR:

- Cell loss rate (CLR) gives no indication of throughput loss.
 1% cell loss can cause 50% throughput loss.
 10% cell loss may result in only 10% throughput loss.
- Dropping all cells of a packet is better than dropping randomly (EPD).
- Never drop the EOM cell of a packet. It results in two packet losses.

Seven Observations About ABR

ABR performance depends heavily upon the switch algorithm.

Following statements are based on our *modified ERICA* switch algorithm.

(For ERICA, see http://www.cis.ohio-state.edu/~jain/)

- Other key parameters: Round-trip Time,
 Number of sources, feedback delay from bottleneck.
- □ No cell loss for *TCP* if switch has Buffers = $4 \times RTT$.
- □ No loss for any number of TCP sources w $4 \times RTT$ buffers.
- □ No loss even with VBR. W/o VBR, $3 \times RTT$ buffers will do.
- **Under many circumstances**, $1 \times RTT$ buffers may do.

Drop policies improve throughput but are not critical.

The Ohio State University

Seven Observations about UBR

- Switch queues may be as high as the sum of TCP windows No cell loss for TCP if Buffers = Σ TCP receiver window
- □ Required buffering depends upon the number of sources.
- **TCP** receiver window \geq RTT for full throughput with 1 source.
- □ Unfairness in many cases.
- Fairness can be improved by proper buffer allocation, drop policies, and scheduling.
- Drop policies are more critical (than ABR) for good throughput
- ❑ No starvation ⇒ Lower throughput shows up as increased file transfer times = Lower capacity
- **Conclusion**: UBR may be ok for: LAN, w/o VBR, Small number of sources, <u>AND</u> cheap implementation but not otherwise.

The Ohio State University

- Packet loss results in a significant degradation in TCP throughput. For best throughput, TCP needs no loss.
- □ ABR performance depends upon switch algorithm.
- With enough buffers, ABR may guarantee zero loss for any number of <u>TCP</u> sources. With UBR there is no such guarantee.
- TCP + ABR is better than TCP + UBR.
 But, UBR may be OK for low-end LANs.
- □ How much improvement with UBR+? Coming soon...

The Ohio State University

Simulation Results: Summary

# srcs	TBE	Buffer	T1	T2	T3	T4	T5	Through	% of	CLR.
		Size						put	Max	
2	128	256	3.1	3.1				6.2	10.6	1.2
2	128	1024	10.5	4.1				14.6	24.9	2.0
2	512	1024	5.7	5.9				11.6	19.8	2.7
2	512	2048	8.0	8.0				16.0	27.4	1.0
5	128	640	1.5	1.4	3.0	1.6	1.6	9.1	15.6	4.8
5	128	1280	2.7	2.4	2.6	2.5	2.6	12.8	21.8	1.0
5	512	2560	4.0	4.0	4.0	3.9	4.1	19.9	34.1	0.3
5	512	5720	11.7	11.8	11.6	11.8	11.6	58.4	100.0	0.0

- □ CLR has high variance
- CLR does not reflect performance. Higher CLR does not necessarily mean lower throughput
- **CLR** and throughput are one order of magnitude apart
- Bursty losses are less damaging than scattered losses The Ohio State University