Multi-Cloud Global Application Delivery for Internet of Things and Smart Cities

Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Cisco PI Meeting, San Jose, CA, May 26, 2016 These slides are available on-line at:

http://www.cse.wustl.edu/~jain/talks/ciscopi.htm

or http://bit.ly/ciscopi

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/ciscopi.htm

©2016 Raj Jain

Washington University in St. Louis

1. Trend: Smart Everything

Smart Watch

Smart TV

Smart Home

Smart Health

Smart Space

Smart Industries

Smart Car

Smart Kegs

Smart Cities

Washington University in St. Louis

What's Smart?

- □ Old: Smart = Can think \Rightarrow Computation = Can Recall \Rightarrow Storage
- Now: Smart = Can find quickly, Can Delegate
 ⇒ Communicate = Networking
- Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...

Gartner Hype Cycle 2015

Computing vs. IoT

- IERC-European Research Cluster on the Internet of Things funded under 7th Framework in 2009
 - \Rightarrow "Internet of European Things"
- US interest started in 2009 w \$3.4B funding for smart grid in American Recovery and Reinvestment Act of 2009

Washington University in St. Louis

Washington University in St. Louis

Layered Model of IoT/Smart Cities

	Services	Energy, Entertainment, Health, Education, Transportation,					
	Apps and SW	SDN, SOA, Collaboration, Apps, Clouds Machine learning, predictive analytics, Data mining, Sensor data, Economic, Population, GIS,		agement			
	Analytics						
ICI	Integration						
	Interconnection	DECT/ULE, WiFi, Bluetooth, ZigBee, NFC,		Maná			
	Acquisition	Sensors, Cameras, GPS, Meters, Smart phones,					
ľ	Market						
	Washington University in S	St. Louis http://www.cse.wustl.edu/~jain/talks/ciscopi.htm	©2016	6 Raj Jain			

Areas of Research for IoT/Smart Cities

- 1. **PHY**: Smart devices, sensors giving real-time information, *Energy Harvesting*
- 2. **Datalink**: WiFi, Bluetooth, ZigBee, 802.11ah, ... Broadband: DSL, FTTH, Wi-Fi, 5G, ...
- 3. **Routing**: *Multiple interfaces*, Mesh networking, ...
- 4. **Analytics**: Big-data, data mining, Machine learning, Predictive analytics, ...
- 5. Apps & SW: SDN, SOA, Cloud computing, Web-based collaboration, Social networking, HCI, Event stream processing, ...
- 6. **Applications**: Remote health, On-line education, on-line laboratories, ...
- 7. Security: Privacy, Trust, Identity, Anonymity, ...

Washington University in St. Louis

Top Inhibitors to the Adoption of the IoT

Ref: B. Lheurex, et al, "Survey Analysis: Users Cite Ambitious Growth and formidable Technical Challenges in IoT Adoption," Gartner Report #G00300127, March 2016,

Washington University in St. Louis

IoT Security: Popular Approach

Ref: <u>http://cloudtweaks.com/2011/08/the-lighter-side-of-the-cloud-the-migration-strategy/</u>

Washington University in St. Louis

Current IoT Security

- □ HP Study
 - > 80% had privacy concerns
 - ➤ 70% lacked encryption
 - ➢ 60% had insecure updates
- □ Symantec Study:
 - > 1/5th of Apps did not use SSL (Secure transfers)
 - None of the devices provided mutual (gateway) authentication
 - > No lock-out/delaying measures against repeated attacks
 - Common web application vulnerabilities
 - Firmware upgrades were not encrypted

Ref: <u>http://fortifyprotect.com/HP_loT_Research_Study.pdf</u>

Ref: M. Barcena and C. Wueest, "Insecurity in the Internet of Things," Symantec, March 2015,Washington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/ciscopi.htm

Internet of Harmful Things

Imagine, as researchers did recently at Black Hat, someone hacking your connected toilet, making it flush incessantly and closing the lid repeatedly and unexpectedly.

 Ref: http://www.computerworld.com/article/2486502/

 security0/worm-may-create-an-internet-of-harmful-things--says-symantec--take-note--amazon-.html

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/ciscopi.htm

Security *≠***AES-128**

- CIA = Confidentiality, Integrity, Availability
 = Encryption + Message Authentication Code + Denial of Service Prevention
- □ Use of AES-128 does not guarantee security.

□ Insecurity:

- > How strong is the key?
- > Where the key is stored?
- > Bugs in system code
- > Backdoors

DEFCON 2015

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/ciscopi.htm

©2016 Raj Jain

DEFCON 2015 (Cont)

DefCon 23:

Hacking a Linux Rifle

- □ Hacking a Linux rifle
- Hacking smart safes
- Wirelessly steal cars
- Hack a Tesla
- □ Hack ZigBee
- Hacking IoT baby monitors
- Hacking FitBit Aria
- Cracking crypto currency
- □ Hack out of home detention
- □ Insteon's false security
- □ Hacking RFID, NFC
- □ DARPA Cyber Grand Challenge \$2M

Ref: https://www.ethicalhacker.net/features/opinions/first-timers-experience-black-hat-defconWashington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/ciscopi.htm

©2016 Raj Jain

Door Locks Insecurity

Onity Door Locks:

- > Used on hotel doors with magnetic strips
- > Information is encrypted using a hotel-specific secret key
- Programming port on the bottom
- Security Key can be read through programming port
- > Firmware update not possible \Rightarrow Replace hardware
- □ Sigma Design's Z-Wave Door Locks:
 - Z-Force tool can monitor traffic and have the lock accept a an arbitrary encryption key

Kwikset Kevo Door Locks:

- Password can be reset by email
- > Hijacked email addresses and phishing attack

Ref: N. Dhanjani, "Abusing the Internet of Things: Blackouts, Freakouts, and Stakeouts," O'Reilly, 2015, ISBN: 978-1-491-90233-2Washington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/ciscopi.htm©2016 Raj Jain

Attack Surface

- 1. Users
- 2. IoT Devices
- 3. IoT wireless access technology: DECT, WiFi, Z-wave, ...
- 4. IoT Gateway: Smart Phone
- 5. Home LAN: WiFi, Ethernet, Powerline, ...
- 6. IP and higher layer protocols: DNS, Routers, ...
- 7. Cloud
- 8. Management Platform: Web interface
- 9. Life Cycle Management: Booting, Pairing, Updating, ...

Trend: Micro-Cloud Computing

- Cloud computing was invented in 2006
- Then: Cloud = Large Data Center Multiple VMs managed by a cloud management system (OpenStack)
- Today: Cloud = Computing using virtual resources
 - µCloud = Cloud in a server with multiple VMs.
 - ➤ Each VM with Multiple Containers ⇒ Multiple Services

http://www.cse.wustl.edu/~jain/talks/ciscopi.htm

©2016 Raj Jain

- □ With small cells, N=# of edge points can be large
- While 5G radio access technologies may see only 1000× increase, backhaul may see much larger increase in capacity, highly dynamic, local
- Need dynamic capacity management
 - \Rightarrow Network Function Virtualization (NFV)
- □ Need aggregation \Rightarrow Computing in the Edge

Washington University in St. Louis

Any Function Virtualization (FV)

- "Network" function virtualization of interest to Network service providers
- But the same concept can be used by any other industry, e.g., financial industry, banks, stock brokers, retailers, mobile games, ...
- □ Everyone can benefit from:
 - Functional decomposition of there industry
 - Virtualization of those functions
 - Service chaining those virtual functions (VFs) or Apps

Networking App Market: Lower CapEx Available on the Virtual IP Multimedia **App Store** System 11111 **CISCO** Store 200.000 AVAILABLE APPS WRN VRAUTE

http://www.cse.wustl.edu/~jain/talks/ciscopi.htm

Washington University in St. Louis

Trend: Mobile Edge Computing □ To service mobile users/IoT, the computation needs to come to edge \Rightarrow Mobile Edge Computing **Micro-Clouds** Users Network http://www.cse.wustl.edu/~jain/talks/ciscopi.htm Washington University in St. Louis ©2016 Raj Jain 25

Multi-Cloud Hierarchy

■ Wide area clouds, local area clouds (home routers with cloud features), Personal area clouds (cars), body area clouds (smart phone) ⇒ Fog Computing

Software Defined Networking (SDN)

- □ SDN was invented in 2009
- □ Then: SDN:
 - > OpenFlow Southbound
 - Separation of control and data planes
 - Centralization of Control
- □ Now: SDN = **Disaggregation** of hw/sw
 - Commodity hardware
 - Software that runs on commodity hw
 - > Open Source Software
 ⇒ Service industry
 - Controller replaced by Orchestrator

©2016 Raj Jain

OpenADN Multi-Cloud Management

Key aspects of OpenADN Architecture

- Global and local controllers
- □ All services, servers, instances accessed by name
- □ Can be used by any global enterprise or carrier

Multiple Applications and Providers

- Each Application service provider has its own Global controller and local controllers
- □ Every one has its own policies and set of providers

Challenges in Multi-Cloud Deployment

- Dynamic: Forwarding changes with state of the servers, links
- Heterogeneous: Different cloud providers, different services, different policies
- **Distributed Control**:
 - > Equipment belongs to infrastructure provider
 - > Data belongs to Tenants
- Massive Scale: Millions of enterprise applications sharing networks provided by many ISPs using cloud services from many CSPs

Challenges in Service Placement

- Delay constraints
- □ WAN links bottleneck: Need to model link queues
- $\Box \quad Complexity: NP-complete \Rightarrow Need efficient heuristics$
- □ Affinity: VNF1 and VNF2 should be co-located
 - Significant communication exchanges
 - > Duplicate memory pages in VMs (same OS and Libraries)
- □ Anti-Affinity: VNF1 and VNF2 should not be placed on the same physical server.
 - > CPU-intensive applications
 - > VMs belonging to different users in a cloud may cause security risk such as cross-VM attacks
 - Duplicate VMs used to improve fault tolerance and availability

Washington University in St. Louis

VM configurations

Resource configurations from Amazon EC2

Configuration	Memory (GB)	Compute Unit	Disk (GB)	Platform (bit)	Cost (\$/h)
m1.samll	1.7	1	160	32	0.1
m1.large	7.5	4	850	64	0.4
m1.xlarge	15	8	1690	64	0.8
c1.medium	1.7	5	350	32	0.2
c1.xlarge	7	20	1690	64	0.8

Washington University in St. Louis

Topology UI

Analysis

- Integer Linear Programming (ILP) to find the optimal solution
 - Exponential complexity (NP-Complete)
 - > Takes days \Rightarrow Not usable in real-time deployment scenarios
- □ Heuristics:
 - Least-full first with First Finish (LFFF)
 - Most-full first with Decreasing time (MFDT)
 - Least-full first with Decreasing time (LFDT)
 - Most-full first with First Finish (MFFF)
 - Fair-Weighted Affinity-based Scheduling (FWS)

Washington University in St. Louis

Machine Learning Based Placement

- Need to speed up placement and scaling so that latency could be maintained dynamically.
- □ ILP and exhaustive search may be slow for such a situation.
- Application of machine learning to learn from previous state to dynamically manage networks at future times could be a way to handle this problem.

Summary

- Clouds getting smaller, Carriers and enterprises moving to clouds, Internet of things are leading to clouds everywhere ⇒ multi-cloud applications.
- 2. Our multi-cloud application management system (MCAD) allows policy-based deployment and management of multicloud application. Handles heterogeneous clouds and respects resource ownerships
- 3. Service function placement problem is NP complete. Challenges included delay constraints, WAN Link bottlenecks, and affinity
- 4. We have developed efficient heuristics for placement and can be made faster with machine learning.

Washington University in St. Louis

References Deval Bhamare, Raj Jain, Mohammed Samaka, Gabor Vaszkun, Aiman Erbad, "Multi-Cloud Distribution of Virtual Functions and Dynamic Service Deployment: OpenADN Perspective," Proceedings of 2nd IEEE International Workshop on Software Defined Systems (SDS 2015), Tempe, AZ, March 9-13, 2015, 6 pp. http://www.cse.wustl.edu/~jain/papers/vm_dist.htm □ Subharthi Paul, Raj Jain, Mohammed Samaka, Aiman Erbaud, "Service Chaining for NFV and Delivery of other Applications in a Global Multi-Cloud Environment," ADCOM 2015, Chennai, India, September 19, 2015, http://www.cse.wustl.edu/~jain/papers/adn in15.htm □ Raj Jain, Mohammed Samaka, "Application Deployment in Future Global Multi-Cloud Environment," The 16th Annual **Global Information Technology Management Association** (GITMA) World Conference, Saint Louis, MO, June 23, 2015, http://www.cse.wustl.edu/~jain/papers/apf gitp.htm Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/ciscopi.htm ©2016 Rai Jain

References (Cont)

Subharthi Paul, Raj Jain, Mohammed Samaka, Jianli Pan, "Application Delivery in Multi-Cloud Environments using Software Defined Networking," Computer Networks Special Issue on cloud networking and communications, Available online 22 Feb 2014, http://www.cse.uustl.edu/~ioin/papers/compet14.htm

http://www.cse.wustl.edu/~jain/papers/comnet14.htm

 Raj Jain and Subharthi Paul, "Network Virtualization and Software Defined Networking for Cloud Computing - A Survey," IEEE Communications Magazine, Nov 2013, pp. 24-31, <u>http://www.cse.wustl.edu/~jain/papers/net_virt.htm</u>

Acronyms

- ATMAsynchronous Transfer Mode
- ECN Explicit congestion notification
- □ EFCI Explicit Forward Congestion Indication
- FECN Forward Explicit Congestion Notification
- □ GB Gigabyte
- □ IEEE Institution of Electrical and Electronic Engineering
- □ IETF Internet Engineering Task Force
- □ IoT Internet of Things
- □ IP Internet Protocol
- □ IRTF Internet Research Task Force
- ITU International Telecommunications Union
- LAN Local Area Network
- □ LTE Long Term Evolution
 - MHz Mega Hertz
- OpenADN Open Application Delivery Networking
- □ SDN Software Defined Networking

Washington University in St. Louis

Acronyms (Cont)

- **TCP** Transmission Control Protocol
- **TV** Television
- □ VM Virtual Machine
- □ WAN Wide Area Network
- □ WiFi Wireless Fidelity
- WiMAX Worldwide Interoperability for Microwave Access

