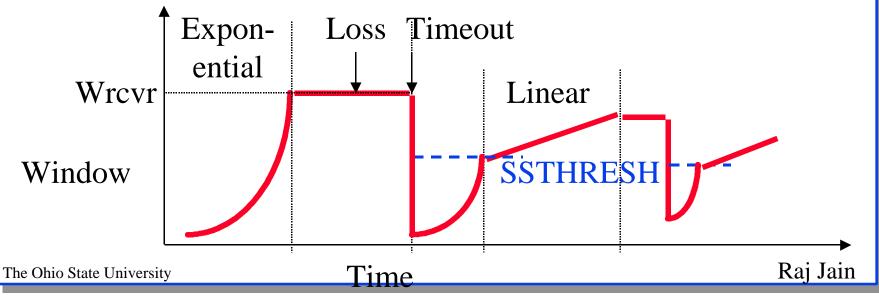


Our Team

q Current:

- q Shivkumar Kalyanaraman
- q Rohit Goyal
- q Sonia Fahmy
- q Jianping Jian
- **q Past**:
 - q Fang Lu
 - q Ram Viswanathan
 - q Manu Vasandani
 - q Arun Krishnamoorthy


- q TCP Congestion mechanisms
 Slow start, Fast Retransmit/recovery, RED, ECN
- q TCP over ABR results
- q Tough TCP Tests: Further modifications of ERICA
- q TCP over UBR results
- q UBR+

TCP Congestion Mechanisms

- q End-System Based:
 - q Silly Window Syndrome Avoidance
 - q Delayed Ack
 - q Slow Start Congestion Avoidance
 - q Fast Retransmit and Recovery
 - q Selective Acknowledgment (SACK)
- q Router Based:
 - q Random Early Discard (RED)
 - q Explicit Notification (Future)
- q Difference between routers and switches is decreasing
 It is important to understand TCP/IP mechanisms

TCP/IP Slow Start

- q Maximum Segment Size (MSS) = 512 bytes
- q Congestion Window (CWND)
- q Window W = Min{Wrcvr, CWND}
- q Slow-Start Threshold = max{2,min{CWND/2,Wrcvr}}
- **q** Exponential until SSTHRESH: W = W+1 for every ack
- **q** Linear afterwards: W = W + 1/W for every ack until Wrcvr

ABR with Small Buffers

# srcs	TBE	Buffer	T1	T2	T3	T4	T5	Through	% of	CLR.
		Size						put	Max	
2	128	256	3.1	3.1				6.2	10.6	1.2
2	128	1024	10.5	4.1				14.6	24.9	2.0
2	512	1024	5.7	5.9				11.6	19.8	2.7
2	512	2048	8.0	8.0				16.0	27.4	1.0
5	128	640	1.5	1.4	3.0	1.6	1.6	9.1	15.6	4.8
5	128	1280	2.7	2.4	2.6	2.5	2.6	12.8	21.8	1.0
5	512	2560	4.0	4.0	4.0	3.9	4.1	19.9	34.1	0.3
5	512	5720	11.7	11.8	11.6	11.8	11.6	58.4	100.0	0.0

- q CLR has high variance
- q CLR does not reflect performance. Higher CLR does not necessarily mean lower throughput
- q CLR and throughput are one order of magnitude apart

TCP over ABR: Observations

- q CLR in the switch is low. But, throughput is also low
- q The buffers can not be allocated based on TBE
- q Maximum queue length and TBE have little/no relationship

TCP: Observations

- q With enough buffers in the network, TCP can automatically fill any available capacity.
- q TCP performs best when there is NO packet loss.Even a single packet loss can reduce throughput considerably.
- q Slow start limits the packet loss but loses considerable time.
 With TCP, you may not lose too many packets but you loose time.
- q Bursty losses cause more throughput degradation than isolated losses.
- q With low buffers, TCP does not use all the available bandwidth

q Many duplicate packets are dropped at the destination

q For each packet loss, much time is lost due to timer granularity
Timer granularity is the key parameter in determining time lost

Fast Retransmit and Recovery

- q Fast Retransmit: Three consecutive acks for the same segment \Rightarrow Loss \Rightarrow Retransmit before timeout
- q Fast Recovery: Reduce congestion window to half (instead of 1)

 \Rightarrow No new transmissions until duplicate acks arrive for the remaining half

- q Single packet loss \Rightarrow One RTT wasted \Rightarrow Not bad
- q Multiple packet loss ⇒ Timeout Timeout = Mean + 4 Stdv. of RTT or <u>one tick</u> ⇒ 100 ms wasted ⇒ Really bad

Effect of Fast Retransmit

- q Fast retransmit helps only if occasional losses
 Mild congestion or errors
- q With n packet loss, SSTHRESH is reduced to half after each retransmission. Window enters the linear-increase zone even when the window is small \Rightarrow Low throughput.
- q Even with fast retransmits, there are time-outs when the losses are bursty. These time-outs are more damaging than if there is no fast retransmit since SSTHRESH is low.

	Bursty Loss	Scattered Loss
With Fast-Retransmit Fast-Recovery	×	\checkmark
Without Fast-Retransmit Fast-	\checkmark	×
Recovery		
The Ohio State University		Raj Jain

Buffer Requirements for ABR: Key Factors

- q Switch Algorithm: Transient Response (settling) time
- q Round Trip Time (RTT)
- q Feedback Delay (bottleneck to source)
- q Switch Algorithm *Parameters*:
 - q Averaging Interval
 - q Target Utilization
 - q ERICA+ queue control
- **q** Presence and characteristics of background VBR
- q Number of VCs
- q TCP Receiver window size

ABR Switch Buffer Requirements

q ABR performance depends heavily upon the switch algorithm.

Following statements are based on our *modified ERICA* switch algorithm.

No cell loss for *TCP* if switch has Buffers = $4 \times RTT$.

- q No loss for any number of TCP sources w $4 \times RTT$ buffers.
- q No loss even with VBR. W/o VBR, $3 \times RTT$ buffers will do.
- q Under many circumstances, $1 \times RTT$ buffers may do.
- q With ABR most of the queues are at the source.Not much queue in the switch
- q In general:

```
Qmax = a \times RTT + b \times Averaging Interval + c \times Feedback 
delay + d \times fn(VBR)
```

The Ohio State University

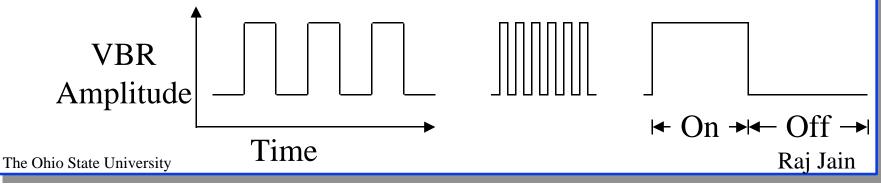
High Frequency VBR: Problem

q Limit of $1 \times RTT$ due to VBR is good for large VBR cycle times.

TCP and ABR get enough time to adjust.

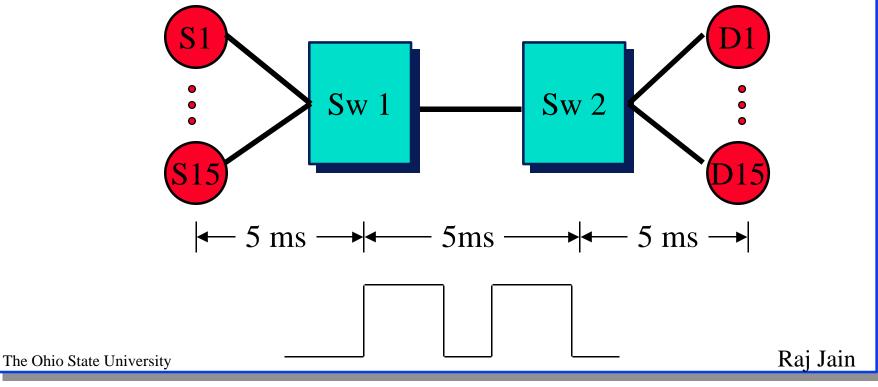
q Faster VBR causes faster variations in available capacity.
 Neither TCP nor Switch algorithm may have time to adjust
 ⇒ Can lead to instability at high utilization levels.

VBR		F/b	Maximum	Total	Effici-	Fair-
On/Off R	TΤ	Delay	Queue	Throughput	ency	Ness
30 ms	30	10	12359=1.12*RTT	69.60	92.65	0.9967
100 ms	30	10	13073=1.18*RTT	63.85	85.00	0.9987
10 ms	30	10	diverges			
<u>1 ms</u>	30	10	diverges			



- q Buffers vs Efficiency (Utilization) vs Fairness
- q It is possible to have lower queues (lower buffer required) if the target utilization is kept low.

ABR Test Cases


- q Configurations: n sources, parking lot, ...
- q ABR Traffic: Infinite, bursty
- q Background traffic: without and with VBR
- q High Layer: non-TCP, TCP
- q RTT mix: Similar RTTs, varying RTTs
- vBR Period: Large, medium, small(compared to feedback delay)

A Tough Test Case

q 15 TCP sources, with 10 ms VBR period with a duty cycle of 0.7 (7 ms on, 3 ms off),
10 ms feedback delay,
30 ms RTT

Flocking Effect

- q All cells of a VC are often seen together.
- q There is clustering of sources.
- q Not all sources are seen all the time.

ERICA Modifications

- q Boundary Cases:
 - q No ABR cells received ⇒ No active sources (N=0) Fairshare = ∞ ?

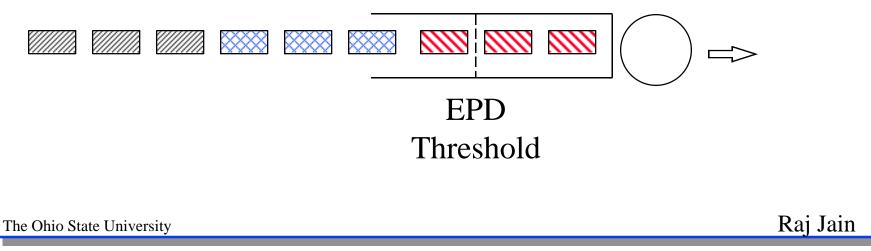
ERICA Modifications (Cont)

- q Average number of sources
- q Average load factor = ABR Input rate/ABR capacity
 - q Average ABR Input Rate
 - = Number of cells/averaging interval
 - : Average Number of ABR cells
 - Average Averaging interval
 - q Average VBR usage
 - : Average Number of VBR cells
 - Average Averaging interval
- q Averaging \Rightarrow Decisions based on longer timer
 - \Rightarrow Slower response
 - \Rightarrow Buffer requirements are over $4 \times RTT$

TCP Over Plain UBR

- q Low throughput
- **q** Unfair
- q Anomalies: More receiver buffer ⇒ Lower throughput
 Due to Silly window avoidance + Delayed Ack
- q Solution: Min sender buffer size should be $3 \times MSS$

Ref: Comer


TCP/IP over UBR: Improvements

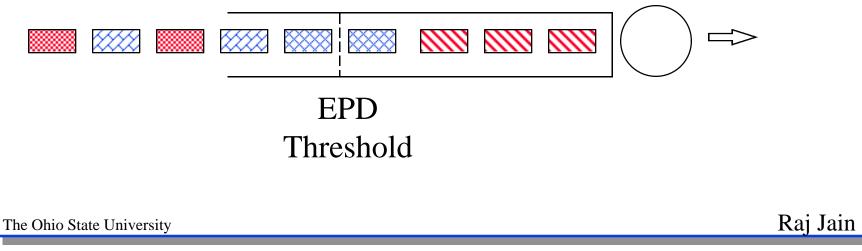
- **q** Switch Based Mechanisms:
 - q PPD
 - q EPD
 - q EPD + per-VC Accounting
 - q EPD + per-VC queueing
- q Source Based Mechanisms:
 - q CLP Probe
 - q Cell Pacing
 - q Smaller Segments

PPD and EPD

- q Plain ATM: Discard all cells if Q > threshold
- q Partial Packet Discard:
 Discard all cells of a packet if one cell dropped
 Q > threshold
- q Early Packet Discard:

Discard all cells of new packets if Q > threshold

PPD vs EPD

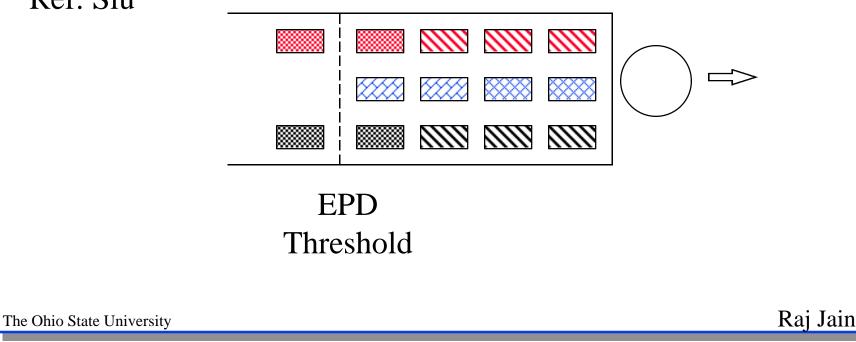

- q Plain ATM \Rightarrow Many packets dropped
- **q** Dropping all cells of a packet is better than dropping randomly
 - \Rightarrow PPD is better than plain UBR
- q Never drop the EOM cell of a packet.It results in two packet losses.
- q EPD \Rightarrow Even fewer packets dropped => better throughput
- q Plain ATM << PPD << EPD
- q EPD improves efficiency but not fairness

UBR Switch Buffer Requirements

- q Switch queues may be as high as the sum of TCP windows No cell loss for TCP if Buffers = Σ TCP receiver window
- q Required buffering depends upon the number of sources.
- q TCP receiver window \geq RTT for full throughput with 1 source.
- q Unfairness in many cases.
- q Fairness can be improved by proper buffer allocation, drop policies, and scheduling.
- q Drop policies are more critical (than ABR) for good throughput
- q No starvation ⇒ Lower throughput shows up as increased file transfer times = Lower capacity

EPD + Per-VC Accounting

- q Selective EPD: Select only high rate VCsFast Buffer Allocation Scheme
- q EPD: Drop all packets if queue X > threshold $R \Rightarrow$ Unfair
- q No per-VC queueing \Rightarrow All VCs share a single FIFO queue
- q per-VC accounting \Rightarrow track Xi and N
- q N = # of non-zero Xi's



- q If X > threshold, drop next arriving packet
 if Xi >= fn(X, N, K, R)
- **q** Where K = Total number of buffers
- q Drop if $Xi/(X/N) \ge Z(1+(K-X)/(X-R))$
- q Here Z = parameter between 0.5 and 1
- q Note that packets from more and more flows are dropped as queue X increases
- q Siu has analyzed a EPD + Simpler per-VC accounting
- q If X > threshold, drop next arriving packet if $Xi/(X/N) \ge Z$
- **q** Conclusion: Per-VC accounting improves fairness
- **q** Other Ideas:
 - q Do not drop successive packets
 - q Drop from queues not tails \Rightarrow earlier effect

EPD + Per-VC Queueing

- q Accept the next packet if Xi/(X/N) < Z
- q Round-robin scheduling \Rightarrow Fairness further improved
- q However, more VC's have packets dropped \Rightarrow Lower total throughput

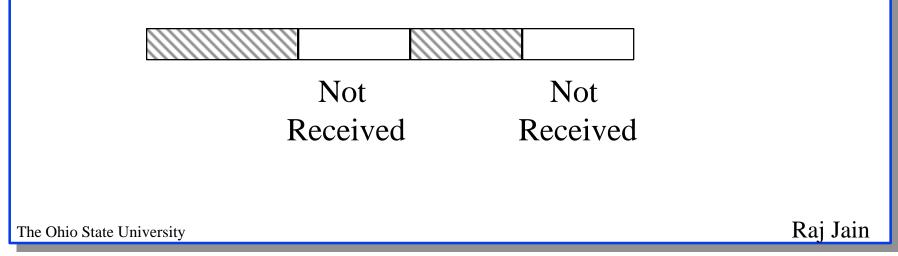
Ref: Siu

CLP Probe

- q Idea:
 - q Use probe packets with CLP bit set to sense network congestion
 - q If probe makes it then increase window.
 - q otherwise slow-start
- q Whenever window is increased, the next packet is sent with CLP set
- q Throughput improved from 53% to 85%
- **Ref: Perloff and Reiss**

Cell Pacing

- **q** Use lower than link rate
- q Using the right rate changed throughput from 0.9% to 68%
- q Even with multiple sources throughput changed from 1.6% to 52%
- q How to select the right rate?
- Ref: Ewy, et al


Effect of Segment Size

- q Large segments \Rightarrow Large retransmissions
- q If buffering is the bottleneck, smaller segments
 ⇒ better throughput
- q If processing is the bottleneck, smaller segments \Rightarrow More overhead \Rightarrow Less throughput
- q Buffering was small in initial switches
- **q** Need buffering equal to several round-trips

Ref: Ewy, et al

Selective Acknowledgment

- q Allows receiver to indicate multiple blocks of received segments.
- q Receiver indicates lower-edge and upper-edge of all received segments
- q Senders can retransmit only the missing segments.
- **q** There is no need for multiple timeouts or duplicates

Random Early Discard

- q Exponential averaging
 - q Bursty traffic

 \Rightarrow Instantaneous queue can be high or low

 \Rightarrow time averaging

q Qavg =
$$(1-\alpha)$$
Qavg+ α q if q>0

q Qavg = (1- α)^{β} Qavg otherwise, β = f(idle time)

q Two thresholds:

- q Min < Qavg < Max \Rightarrow mark (drop) arriving packet with probability p
- q $pb = pb_max \times (Qavg-Min)/(Max-min)$

q
$$p = pb/(1-count \times pb)$$

- q Count = Number of packets since the last mark
 ⇒ Marking probability increases as more packets arrive
- q Count reset after marking a packet
- q $Qavg \ge Max_threshold \Rightarrow Drop all$

Ref: Floyd and Jacobson

Explicit Notification

- q Routers send ICMP messages (or set bit) when Qavg > threshold
- q Sources respond to ECN once per round trip \Rightarrow Ignore others
- q Halve cwnd and ssthresh on first ECN
- q Do not respond to succeeding ECNs until all outstanding packets have been acked (i.e., one round trip)
- q Do not reduce cwnd or ssthresh after timeout or 3 duplicate acks, if ECN action taken in this round trip.
- Ref: S. Floyd, "TCP and Explicit Congestion Notification," LBL Tech Report.

- Packet loss results in a significant degradation in TCP throughput. For best throughput, TCP needs no loss.
- q With enough buffers, ABR may guarantee zero loss for any number of <u>TCP</u> sources.
- q Performance of ABR depends on the switch algorithm
- q For zero loss, UBR need buffers = Σ receiver windows
- q PPD << EPD << Selective EPD
- **q** ABR vs UBR issue is that of ATM end-to-end vs backbone The Ohio State University Raj Jain

TCP Congestion: References

- q W. Richard Stevens, "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms," Internet Draft draft-stevens-tcpca-spec-00.txt, February 1996
- V. Jacobson and M. Karels, "Congestion Avoidance and Control," Proc. SIGCOMM'88, August 1988, pp. 314-329.
- q S. Floyd and V. Jacobson, "Random Early Detection Gateways for Congestion Avoidance," IEEE/ACM Transactions on Networking, Vol. 1, August 1993, pp. 397-413.
- q J. Nagle, "Congestion Control in IP/TCP Internetworks," ACM Computer Communications Review, Vol. 14, No. 4, October 1984, pp. 11-17.

The Ohio State University

- **q** V. Jacobson, R. Braden, and D. Borman, "TCP Extensions for High Performance," Internet RFC 1323, May 1992.
- q S. Floyd, "TCP and Explicit Congestion Notification,"
- q S. Floyd, "TCP and Successive Fast Retransmits," LBL Technical Report, May 1995, available ftp:://ftp.ee.lbl.gov/papers/fastretrans.ps
- q C. Villamizar and C. Song, "High Performance TCP in ANSNET," Computer Communications Review, October 1994, pp. 45-60.
- q J. Hoe, "Improving the start-up behavior of a congestion control scheme for TCP," ACM SIGCOMM 96, to appear.
- q L. Zhang, S. Shenker, and D.D. Clark, "Observations on the dynamics of a congestion control algorithm: the effects of two-way traffic," SIGCOMM'91, September 1991, pp. 133-147.
 The Ohio State University Raj Jain

TCP over ATM:

Our Papers/Contributions

All our past ATM forum contributions, papers and presentations can be obtained on-line at http://www.cis.ohio-state.edu/~jain/

- q S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, F. Lu and S. Srinidhi, ``Performance of TCP/IP over ABR,'' To appear Globecom'96.
- q R. Jain, et al, "Buffer Requirements for TCP over ABR," ATM Forum/96-0517, April 1996.
- q R. Jain, et al, "Performance of TCP over UBR and buffer requirements," ATM Forum/96-0518, April 1996.
- q R. Jain, et al, "TBE and TCP/IP traffic," ATM Forum/96-0177, February 1996.

The Ohio State University

TCP over ATM: References

- q A. Romanow and S. Floyd, "Dynamics of TCP Traffic over ATM Networks," IEEE Journal on Selected Areas in Communications, Vol. 13, No. 4, May 1995, pp. 633-641, ftp://ftp.ee.lbl.gov/papers/tcp_atm.ps.Z
- J. Heinanen and K. Kilkki, "A Fair Buffer Allocation Scheme," Telecom Finland Draft 17 March 1995.
- q H. Li, K-Y Siu, and H-Y Tzeng, "TCP Performance over ABR and UBR Services in ATM," Proc. IPCCC'96, March 1996.
- q D. E. Comer and J. C. Lin, "TCP Buffering and Performance over an ATM Network," Internetworking: Research and Experience, Vol. 6, 1995, pp. 1-13.

The Ohio State University

- M. Perloff and K. Reiss, "Improvements to TCP Performance in High-Speed ATM Networks," Communications of ACM, February 1995, pp. 90-100.
- q B.j. Ewy, et al, "TCP/ATM Experiences in the MAGIC Testbed,"
- q L. Kalampoukas and A. Varma, "Performance of TCP over Multi-Hop ATM Networks: A Comparative Study of ATM-Layer Congestion Control Schemes," Technical Report, UCSC-CRL-95-13, in ftp://ftp.cse.ucsc.edu/