Performance of TCP/IP Using ATM ABR and UBR Services over Satellite Networks

Shiv Kalyanaraman, Raj Jain, Rohit Goyal, Sonia Fahmy

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

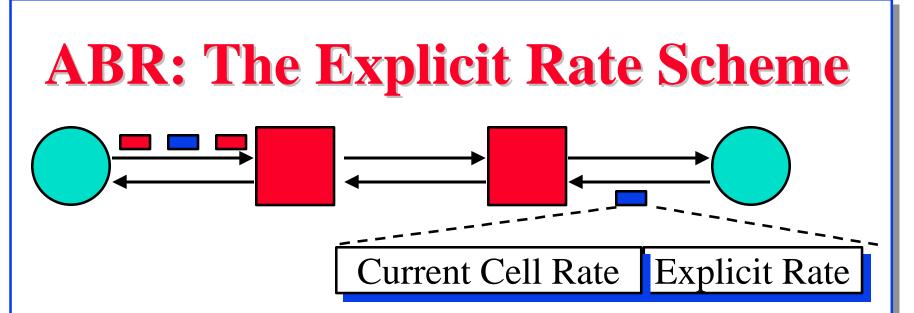
The Ohio State University

- q ABR, UBR, VBR, CBR
- q TCP
- q ERICA and ERICA+ Switch Schemes
- q Effects of # of sources, feedback delay, switch scheme, VBR background

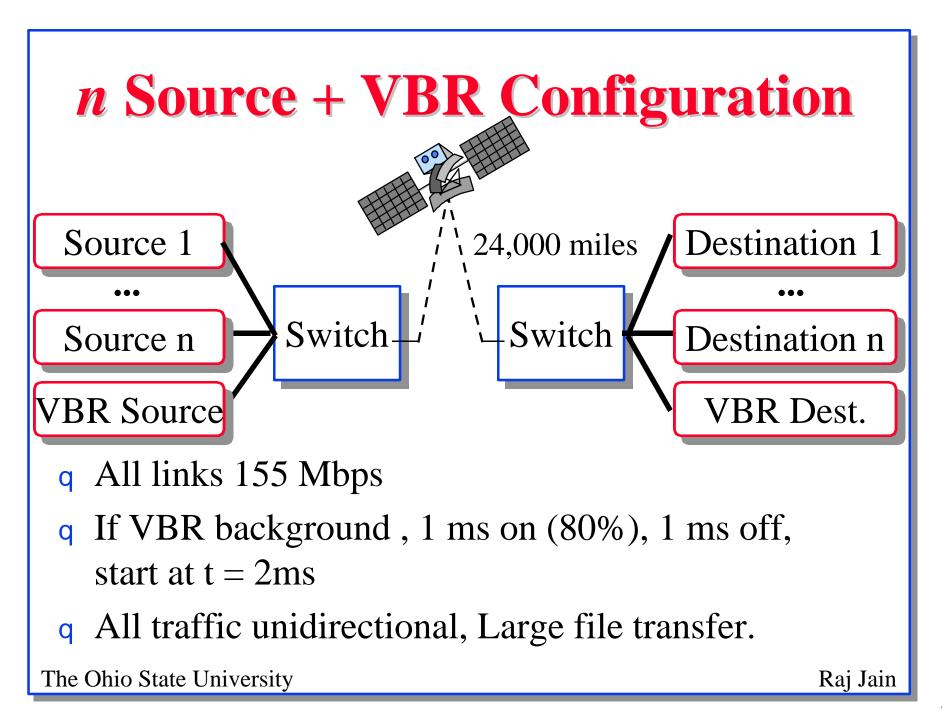
Classes of Service

- q ABR (Available bit rate): Follows feedbackNetwork gives max throughput with minimum loss.
- **q** UBR (Unspecified bit rate):

User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.


- **q CBR** (Constant bit rate): User declares required rate. Throughput, delay and delay variation guaranteed.
- **vBR** (Variable bit rate): Declare avg and max rate.

q rt-VBR (Real-time): Conferencing.


Max delay and delay variation guaranteed.

q nrt-VBR (non-real time): Stored video.

Mean delay guaranteed.

- q Sources send one RM cell every n cells
- q The RM cells contain "Explicit rate"
- q Destination returns the RM cell to the source
- q The switches adjust the rate down
- q Source adjusts to the specified rate
- **q** Interoperates with all switch algorithms The Ohio State University

Effect of # of Sources

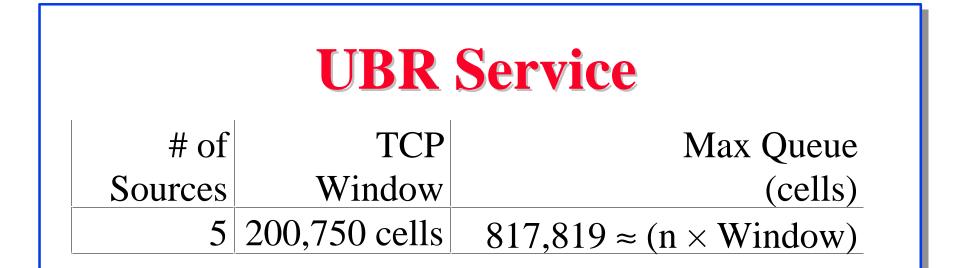
# of	Feedback	Max Queue
Sources	Delay (ms)	(cells)
5	0.01	$1229 (0.006 \times RTT)$
15	0.01	2059 (0.010 × RTT)
5	10.00	18356 (0.090 × RTT)
15	10.00	17309 (0.086 × RTT)

- q Queue increases with sources but only slightly Not proportionately.
- q Queue depends upon the round trip delay
- q Queue increases with feedback delay (proportionately)

The Ohio State University

Effect of Long Feedback Delay							
				Max Queue			
	Sources	Delay (ms)	Scheme	(cells)			
	15	550	ERICA	Unbounded			
	15	550	ERICA+	$1.6 \times RTT$			

q ERICA = Explicit Rate Indication for Congestion Avoidance


- q The simple scheme becomes unstable with long feedback delay
- q Need a more sophisticated scheme \Rightarrow ABR results depend upon the switch scheme

The Ohio State University

Effect of High Frequency VBR

# of	Feedback	Switch	Max Queue
Sources	Delay (ms)	Scheme	(cells)
15+VBR	0.01	ERICA	Unbounded
15+VBR	10.00	ERICA	Unbounded
15+VBR	0.01	ERICA+	2006 (0.010 × RTT)
15+VBR	10.00	ERICA+	5824 (0.028 × RTT)

- q The simple scheme diverges with high variance in capacity
- q Need averaging schemes or ERICA+ queue control

- q Buffer requirement = Σ Window_i
- q Proportional to the number of sources \Rightarrow Not scalable

Summary

- q ABR does provides an effective control of congestion in the network. The network queues are very small.
 Most of the queues are in the sources ⇒ ABR pushes TCP queues to the edge of the network.
- q 2 to 4 times RTT buffers in the switches are sufficient with ABR.
- q TCP and VBR produce a variable demand and variable capacity workload
 - \Rightarrow Unbounded queues with simple ABR schemes.
- **q** UBR requires switch buffers equal to the sum of window sizes \Rightarrow UBR is not scalable.

The Ohio State University

TCP/IP Parameters

- q Maximum Segment Size = 512 bytes
- q Timer granularity = 100 ms
- q No TCP processing time
- q Max window = 16×64 kB = 24576 cells One-way delay = 15 ms = 291 kB
- q No delay ack timer
- q Fast retransmit/recovery or Early packet drop (EPD) have no impact when there is no loss.

Simulation Parameters

- q Source: Parameters selected to maximize ACRTBE = 512
 - CDF = 0.5
 - ICR = 10 Mbps
 - ADTF = 0.5 sec
 - PCR = 155.52 Mbps, MCR= 0, RIF (AIR) = 1,
 - Nrm = 32, Mrm = 2, RDF = 1/512
 - Traffic: TCP/IP with Infinite source application
- **q** Switch: ERICA+

Averaging interval = min{100 cells, 1000 μ s} and other values

TCP over ABR: Buffering

- q Buffering depends heavily upon switch scheme.
- **q** For the ERICA scheme and the traffic loads considered:
 - q W/o VBR, 3×RTT buffers will do for any number of TCP sources
 - q In general, $Qmax = a \times RTT + b \times Averaging$ Interval + c×Feedback delay + d×fn(VBR)
- q After TCP sources are rate-limited:Switch queues become zero, source queues build up