ATM Networks:
An Overview and
Applications
Raj Jain
Raj Jain is now at
Washington University in Saint Louis
http://www.cse.wustl.edu/~jain/

The Ohio State University

- □ Trends: Why networking is critical?
- □ What is ATM?
- □ How and where can you use ATM?
- □ What are other competing technologies?
- □ How OSU is leading the research on ATM?

Trends

- Communication is more critical than computing
 - Greeting cards contain more computing power than all computers before 1950.
 - Genesis's game has more processing than 1976 Cray supercomputer.
- Last 10 years: Personal computing Next 10 years: Collaborative computing
- Past: Corporate networks (Intranets)
 Future: Intercorporate networks (Extranets)

Trends (Cont)

- Past: National Info Infrastructures (NII)
 Future: Global Info Infrastructures (GII)
- □ Internet: 0.3 M hosts in Jan 91 to 9.5 M by Jan 96
 ⇒ More than 5 billion (world population) in 2003
- ❑ Networking is moving from specialists to masses ⇒ Usability (plug & play), security
- \Box Standards based networking \Rightarrow Reduced cost
- URL is more important than a company's phone number
- □ Stone age to Networking Age

- □ No need to get out for
 - Office
 - Shopping
 - Entertainment
 - Education

The Ohio State University

- q Virtual reality will satisfy your needs for
 - q Sales
 - q Training
 - q Sex

Trends in Applications

AT&T: 125 to 130 M calls/day @ 5 min/call 64 kbps = 28.8 Gbps = 1/1000 of one fiber

 \Box 200 Million × 24 hr/day × 64 kbps = 12.8 Tbps

What is ATM?

- Automatic Teller Machines
- □ Adobe Type Manager
- A Technical Mistake
- After The Millennium
- □ A Ton of Memory
- Asynchronous Transfer Mode

ATM

- □ ATM Net = Data Net + Phone Net
- Combination of Internet method of communication (packet switching) and phone companies' method (circuit switching)

- Current phone networks are synchronous (periodic).
 ATM = Asynchronous Transfer Mode
- Phone networks use circuit switching.
 ATM networks use "Packet" Switching
- In phone networks, all rates are multiple of 8 kbps.
 With ATM service, you can get any rate.
 You can vary your rate with time.
- With current phone networks, all high speed circuits are manually setup. ATM allows dialing any speed. The Ohio State University

ATM vs Data Networks

- Internet Protocol (IP) is connectionless.
 You cannot reserve bandwidth in advance.
 ATM is connection-oriented.
 You declare your needs before using the network.
- Routers cannot guarantee bandwidth or delay.
 ATM networks reserve bandwidth and buffers.
- In IP, each packet is addressed and processed individually. Inefficient for continuous media like voice and video.

ATM vs Data Nets (Cont)

□ IP has no traffic management. (TCP does have traffic management but it is 1984 technology.) ATM has 1996 traffic management technology. Required for high-speed and variable demands. □ IP uses variable size packets. ATM uses fixed size cells. Less variance in delay \Rightarrow Good for voice. (However, at high speeds, variance with variable size packets is not significant.)

ATM vs Data Nets (Cont)

- □ Current IP uses 4-byte addresses.
 - (e.g., 123.45.65.89)
 - Not enough IP addresses for global communication. (Next Generation of IP will use 16-byte addresses) ATM uses 20-byte addresses.
- □ IP has to match addresses for routing each packet. ATM indexes circuit numbers for switching \Rightarrow Fast.

Where to Use ATM?

- Desktop
- Campus backbone
- □ Wide area networks
- □ Inside a carrier's network

- Software driver allows ATM network to look like an Ethernet (or token ring)
- All current data applications will run on ATM
- ATM stations can talk to non-ATM stations
- One ATM LAN can be multiple virtual LANs You can logically divide people into workgroups
- Winsock 2 will allow new ATM (video) applications Raj Jain

The Ohio State University

□ ATM Emulation:

- Software driver packs ATM cells into Ethernet frames
- Leave current Ethernet interface cards in hosts. Replace hubs with "Cells in Frame Attachment Device (CIF-AD)".

- □ Frame relay or leased line services on ATM
- □ Silence suppression: Unused bandwidth for data
- □ LAN emulation and data services
- **Bandwidth added on demand**

 $\Box_{\text{The Ohio State University}} \text{Traffic management} \Rightarrow \text{Divert overload to other links}_{\text{Raj Jair}}$

Competing Technologies

□ Fast Ethernet to the desktop Gigabit Ethernet for the campus backbone • No traffic management. No priority. (Being added) □ Frame-Relay for Wide-area networking • Lower speed only (1.5 Mbps - 10 Mbps) • No support for quality of service (for video/voice) □ IP over SONET \bigcirc No signaling \Rightarrow Fixed bandwidth. Can't dial in. \circ No traffic management \Rightarrow Unused bandwidth wasted.

New needs:
 Solution 1: Fix the old house (cheaper initially)
 Solution 2: Buy a new house (pays off over a long run)

The Ohio State University

Key Challenge: Economy of Scale

- Technology is far ahead of the applications.
 Invention is becoming the mother of necessity.
 We have high speed fibers, but not enough video traffic.
- ❑ Low-cost is the primary motivator. Not necessity.
 ⇒ Buyer's market (Like \$99 airline tickets to Bahamas.) Why? vs Why not?
- □ Parallel computing, not supercomputing
- Ethernet was and still is cheaper than 10 one-Mbps links.

The Ohio State University

Challenge: Tariff

- Phone company's goal: How to keep the voice business and get into data too?
- Customer's goal: How to transmit the voice/video/data cheaper?
- **Tariff Today:**
 - 64 kbps voice line = \$300/year
 - 45 Mbps line (\$45/mile/month) Coast to coast = \$180 k-240 k/year
 - \Rightarrow 155 Mbps line = \$540 k \$720 k/year
- □ Tomorrow: 155 Mbps = 1k/month + 28/G cells

 \Rightarrow \$13k - \$45k/year

Raj Jain

The Ohio State University

Case Studies

- AGIS Forth largest ISP. ISP's ISP.
 Offers three quality of services.
 Store and forward, Interactive, Guaranteed.
- □ Chrysler installed a 3000 node network in Detroit area
- McDonald has implemented an ATM backbone for 150 subnets
- World Health Organization is installing 2000-desktop ATM network in Geneva.
- Home Depot, Texaco, Amoco, Fuji Bank of Japan, Malaysian Bank, Royal Bank of Canada, Florida Power and Light, Allegheny Hospital, ...
 The Ohio State University

Who Can Benefit from ATM?

Large enterprises with large WANs

 Scalable: 1.5 to 622 Mbps
 Multiple quality of services
 Integration of voice, data
 Standard

 Internet Service Providers

Carriers

□ Any one with a need for high-quality multimedia

ATM Research at OSU

- **Traffic Management**
- Performance Testing
- □ Voice/Video over ATM
- □ ATM Test beds: OCARnet and CATnet
- Networking Seminar Series

OSU National ATM Benchmarking Lab

- Started a new effort at ATM Forum in October 1995
- Defining a new standard for performance metrics and measurement methodologies
- We have a measurement lab with the latest ATM testing equipment. Funded by NSF and State of Ohio.
- The benchmark scripts can be run by any manufacturer/user in our lab or theirs.
- □ Modeled after Harvard benchmarking lab for routers

Voice/Video over ATM

- □ Speech suppression
 - \Rightarrow Unused bandwidth can be used by data
- Hierarchical compression of Video
 Different users can see different bandwidth video
- Our course was broadcast over the Internet
 - \Rightarrow Experimental Video Lab

OCARnet

Ohio Computing and Communications ATM Research Network

□ Nine-Institution consortium lead by OSU

- Ohio State University
- Ohio Super Computer Center
- OARnet
- Cleveland State University
- Kent State University
- University of Dayton
- University of Cincinnati
- Wright State University
- University of Toledo

The Ohio State University

KSU

OAR

OSU 622 M

Cleveland

155 M

OSC

Raj Jain

UT

WSU

UD

UC

CATNet

- Columbus ATM Network
- Lead by Industry and Technology Council of Columbus
- □ Technology leadership provided by OSU
- □ Fiber links provided by Metricom
- □ Starting with 8 major Columbus companies

Seminar Series

- Recent Advances in Networking and Telecommunications
- □ Why?
 - Technology is advancing too fast.
 - Engineers, managers, planners need to keep up
 - Columbus is the headquarter of several networking and telecommunication companies
- □ 1995 Series sponsored by AT&T
- □ Need a 1997 Sponsor in Columbus

• Topics: Gigabit Ethernet, Residential broadband, Virtual LANs Raj Jain

The Ohio State University

References

- All our ATM Forum contributions and papers are available on-line at <u>http://www.cis.ohio-state.edu/~jain/</u>
 Specially see "Recent Hot Papers" and "References on Recent Advances in Networking"
- C. Gadecki and C. Heckart, "ATM for Dummies," IDG Books, 1996 (non-Technical)
- G. Sackett and C. Y. Metz, "ATM and Multiprotocol Networking," McGraw-Hill, 1997 (Technical).
- □ ATM Forum, <u>http://www.atmforum.com</u>