Application Deployment in Future Global Multi-Cloud Environment

Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu OIN Workshop, Saint Louis, MO October 20, 2015

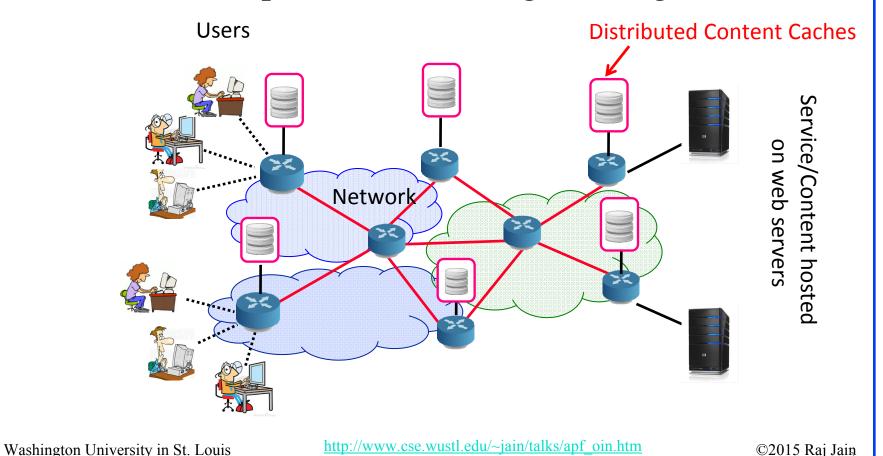
These slides are available on-line at:

http://www.cse.wustl.edu/~jain/talks/apf_oin.htm

Washington University in St. Louis

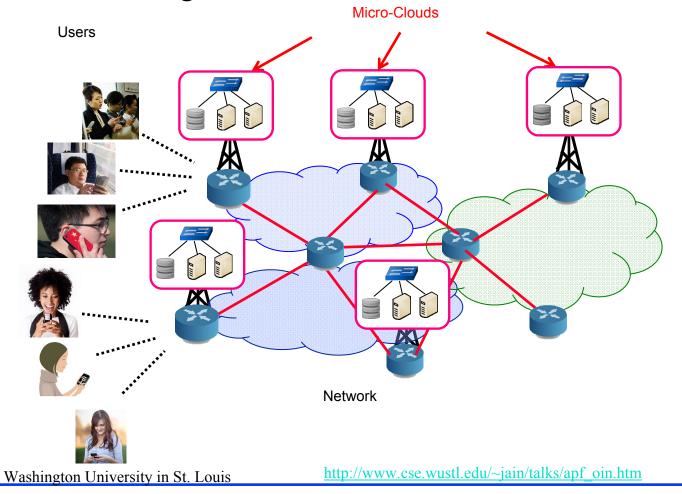
http://www.cse.wustl.edu/~jain/talks/apf_oin.htm

- □ Recent Trends in Networking:
 - > Trend 1: Computation in the Edge
 - > Trend 2: Hierarchical Computation
 - > Trend 3: Liquid Applications
- Solution: Generalized Application Delivery Networking

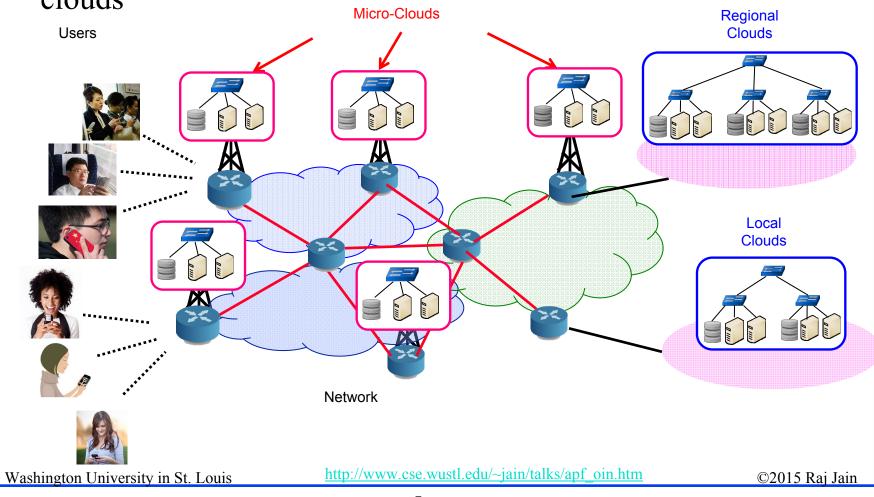

This research was made possible by NPRP grant # 6-901-2-370 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author[s].

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_oin.htm

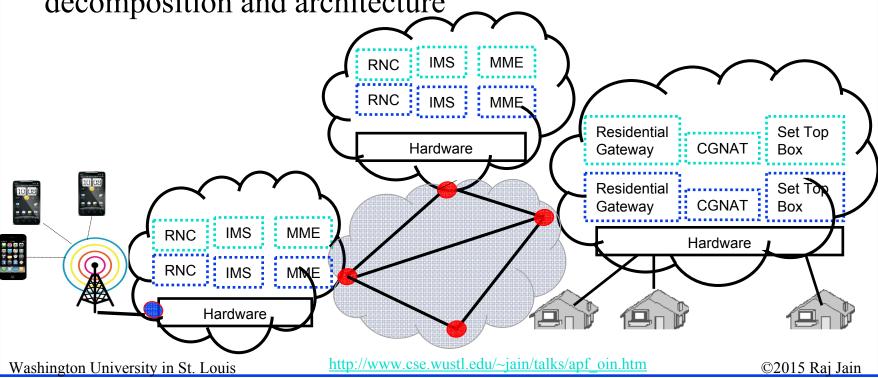

Trend: Content Distribution Networks (CDN) – Evolution of a Data-Centric Internet

□ To serve world-wide users, latency was critical and so the data was replicated and brought to edge


Trend 1: Computation in the Edge

□ To service 5G smart phone users, the computation needs to come to edge ⇒ Micro-cloud on the tower

Trend 2: Hierarchical Computation


■ Larger and infrequent jobs serviced by local and regional clouds

Trend 3: Liquid Applications

□ Current networks designed for voice applications
 ⇒ Network function virtualization (NFV) is looking at functions that are designed for voice applications

□ Future 5G Mobile networks need a more general functional decomposition and architecture

Service-Infrastructure Separation

- □ With cloud computing, anyone can super-compute on demand.
 - > Physical infrastructure is owned by Cloud Service Provider (CSP). Tenants get virtual infrastructure
 - > Win-Win combination
- With virtualization, an ISP can set up all virtual resources on demand
 - > Physical Infrastructure owned by NFV infrastructure service provider (NSP) and tenant ISPs get virtual NFVI services
 - > Win-Win combination

High-Level Requirements

- □ Automatic provisioning and deployment
- Automatic runtime control
 - > Elastic load balancing
 - > Handling failures
- □ Dynamically change the application's distributed footprint
 - > Launch application on new sites
 - > Shutdown existing sites

High-level Challenges

- □ Massively distributed:
 - > Virtual resources distributed geographically
 - > Virtual resources from multiple providers
- □ Common platform for:
 - ➤ Different device types Application servers, middleboxes, routers, switches, etc.
 - > Different service types: Voice, Video, IoT, Gaming, Apps

Inter-Cloud is of interest in 5G as well as in other applications

⇒ Cisco announced \$1B investment in inter-cloud

Ref: Network World, "Cisco pumping \$1 billion more into Inter-Cloud," September 29, 2014,

http://www.networkworld.com/article/2688819/cloud-computing/cisco-pumping-1-billion-more-into-intercloud.html
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_oin.htm
©2015 Raj Jain

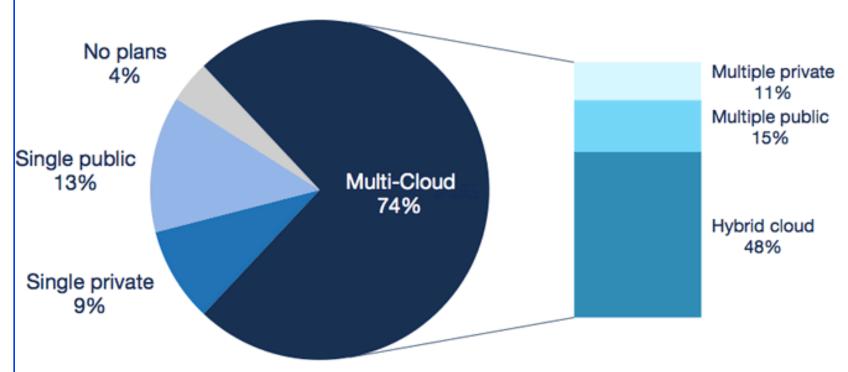
Any Function Virtualization (FV)

- Network function virtualization of interest to Network service providers
- But the same concept can be used by any other industry, e.g., financial industry, banks, stock brokers, retailers, mobile games, ...
- Everyone can benefit from:
 - > Functional decomposition of there industry
 - > Virtualization of those functions
 - > Service chaining those virtual functions (VFs)
 - \Rightarrow A service provided by the next gen ISPs

Carrier App Market: Lower CapEx

Virtual IP Multimedia System

Available on the App Store


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_oin.htm

Trend: Multi-Clouds

Enterprise Cloud Strategy

1000+ employees

Source: RightScale 2014 State of the Cloud Report

□ Most companies use more than one cloud.

Ref: http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2014-state-cloud-survey Washington University in St. Louis

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2014-state-cloud-survey Washington University in St. Louis

Services in a Cloud of Clouds Application Application Application Deployment Service Developers Architects Administrators **Application** Service Providers MCAD Application Service MCAD Application Workflow MCAD Application Cloud **Northbound Interface** (AAW) abstraction (AAS) abstraction (AAC) abstraction MCAD Platform **Southbound Interface** MCAD Resource Driver MCAD Resource Driver MCAD Resource Driver (OpenStack) (OpenDaylight) (EC2) **Resource Providers** Virtual Virtual Virtual **Virtual WAN** Virtual Virtual Virtual Hosts Storage Network **Services** Storage Network Hosts OpenStack OpenDaylight EC2 Cloud Datacenter Enterprise Datacenter ISP Network Network POP Micro-Datacenters http://www.csc.wustl.edu/~jain/talks/apf oin.htm Washington University in St. Louis ©2015 Raj Jain

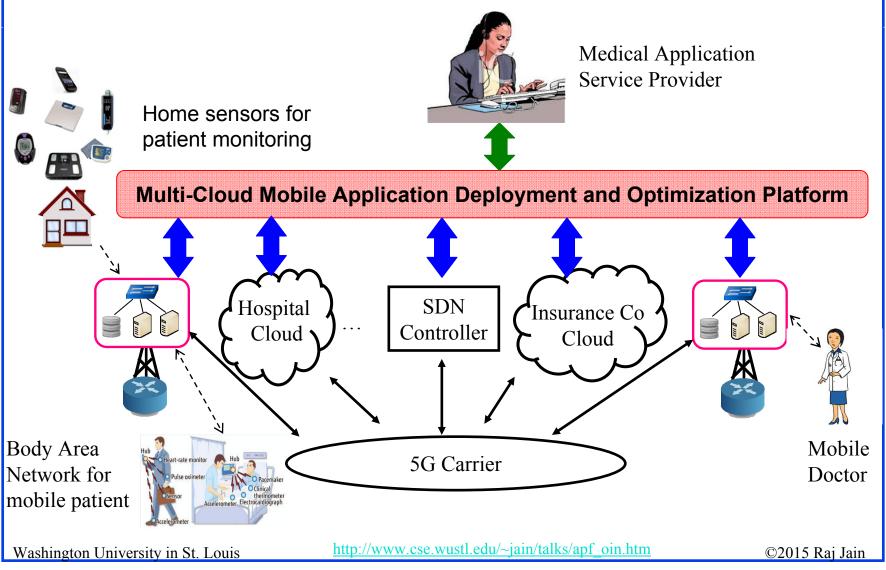
MCAD Features

- Automate the entire process of creating new workflows and installing them, managing them during runtime, uninstalling them as necessary
 - > Allow **Deployment Administrators** specify policies for quantity and location of resources inside various clouds.
- Workflow creation includes virtual networks, computers, storage inside the clouds as well as the network between the clouds
- WAN bandwidth and latency is the key to placement. Allows manual approval and override.
- Physical infrastructure owners keep complete control over their resources while the tenant service providers can deploy their applications according to their desired policies
- All communication is via APIs. All interfaces initially XML based. GUI based in future.

Washington University in St. Louis

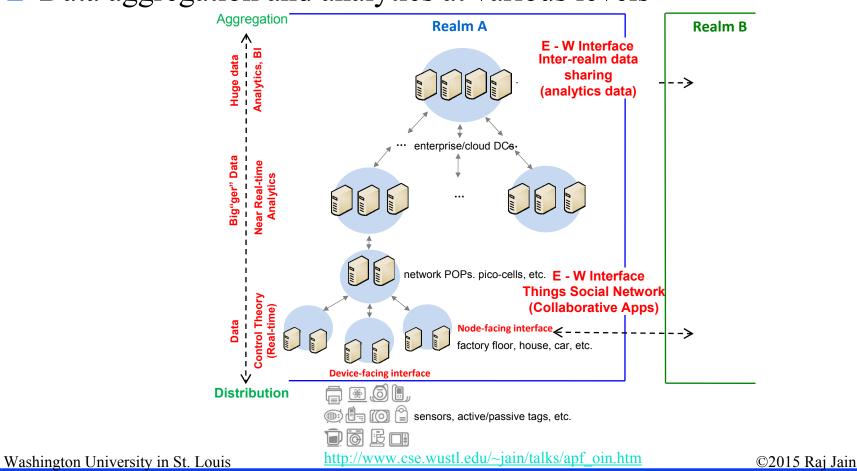
http://www.cse.wustl.edu/~jain/talks/apf_oin.htm

Resource Control

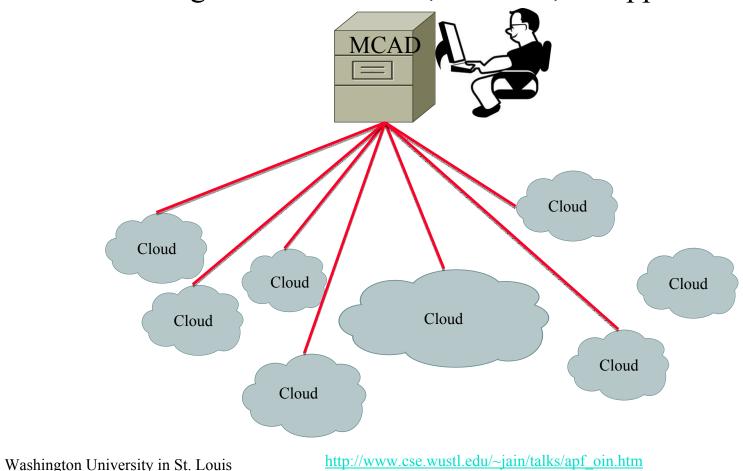

- □ Tenants keep complete control of their data.
 NSP does not have to look at the application data to enforce application level policies
- NSPs keep complete control of their equipment. tenants communicate their policies to NSP's control plane
- VFs and Middle boxes can be located anywhere on the global Internet
 (Of course, performance is best when they are close by)
- ☐ Tenants or NSPs can own OpenADN modules.

 NSPs can offer "Service Chaining" service

Application Delivery for the Enterprise


- MCAD is of interest to 5G Mobile carriers
- But the same concept can be used by any other industry, e.g., financial industry, banks, stock brokers, retailers, mobile games, ...
- Everyone can benefit from:
 - > Functional decomposition of their industry
 - > Virtualization of those functions
 - > Service placement of those virtual functions (VFs)
 - \Rightarrow A service provided by the next gen ISPs

Mobile Healthcare Use Case


Use Case 1: Internet of Things

- Computing everywhere or Fog computing.
- Data aggregation and analytics at various levels

Multi-Cloud Security

□ Can one cloud provider be trusted by another?Would Google trust Microsoft, Amazon, or Apple?

Summary

- 1. To meet the quality of experience (QoE) for future 5G mobile applications, the computation will need to come to edge. Computation will be hierarchical with micro-Clouds on Towers, Local Clouds, and Regional Clouds
- 2. Need software defined inter-cloud management and ability to create/deploy/move applications and functions among clouds while maintaining the required QoE
- Mobile multi-Cloud Application Delivery (MCAD) platform will solve the problem of optimal application placement. WAN link capacity, utilization, and latency are key to the placement of VMs.
- 4. Infrastructure owners keep complete **control** over their resources. Tenants keep complete control over their traffic.
- 5. Same solution is application to numerous other applications such as enterprises, internet of things, and apps.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_oin.htm

Recent Papers

□ Subharthi Paul, Raj Jain, Mohammed Samaka, Jianli Pan, "Application Delivery in Multi-Cloud Environments using Software Defined Networking," Computer Networks Special Issue on cloud networking and communications, Available online 22 Feb 2014,

http://www.cse.wustl.edu/~jain/papers/comnet14.htm

□ Raj Jain and Subharthi Paul, "Network Virtualization and Software Defined Networking for Cloud Computing - A Survey," IEEE Communications Managzine, Nov 2013, pp. 24-31, http://www.cse.wustl.edu/~jain/papers/net_virt.htm

Recent Talks

- Raj Jain, "Smart Cities: Technological Challenges and Issues," IEEE CS Keynote at 21st Annual International Conference on Advanced Computing and Communications (ADCOM) 2015, Chennai, India, September 19, 2015, Chennai, India, September 18, 2015, http://www.cse.wustl.edu/~jain/talks/smrtcit.htm
- Raj Jain, "Internet of Things: Challenges and Issues," IEEE CS Keynote at 20th Annual Conference on Advanced Computing and Communications (ADCOM 2014), Bangaluru, India, September 19, 2014, http://www.cse.wustl.edu/~jain/talks/iot_ad14.htm
- Raj Jain, "AppFabric: Application Deployment and Service Chaining in Future NFV Cloud WAN Environments," Cisco Research Seminar, San Jose, CA, May 15, 2014, http://www.cse.wustl.edu/~jain/talks/apf_csc.htm Raj Jain, "SDN and NFV: Facts, Extensions, and Carrier Opportunities," AT&T Labs SDN Forum Seminar, April 10, 2014, http://www.cse.wustl.edu/~jain/papers/adn_att.htm
- □ Raj Jain, "Networking for Big Data," IEEE CS Keynote at 19th Annual International Conference on Advanced Computing and Communications (ADCOM) 2013, Chennai, India, October 22, 2013. http://www.cse.wustl.edu/~jain/talks/adcom13.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_oin.htm

Acronyms

■ ATM Asynchronous Transfer Mode

■ ECN Explicit congestion notification

■ EFCI Explicit Forward Congestion Indication

□ FECN Forward Explicit Congestion Notification

☐ GB Gigabyte

☐ IEEE Institution of Electrical and Electronic Engineering

□ IETF Internet Engineering Task Force

■ IoT Internet of Things

☐ IP Internet Protocol

□ IRTF Internet Research Task Force

□ ITU International Telecommunications Union

□ LAN Local Area Network

□ LTE Long Term Evolution

MHz
Mega Hertz

OpenADN Open Application Delivery Networking

SDN Software Defined Networking

Acronyms (Cont)

TCP Transmission Control Protocol

□ TV Television

□ VM Virtual Machine

□ WAN Wide Area Network

■ WiFi Wireless Fidelity

■ WiMAX Worldwide Interoperability for Microwave Access