
AppFabric: Application Deployment and Service Chaining in Future NFV Cloud WAN Environments

Project Leader: Subharthi Paul Washington University in Saint Louis Saint Louis, MO 63130, Jain@cse.wustl.edu CRC Tech Seminar, Cisco, May 15, 2014 These slides and audio/video recordings of this talk are at: <u>http://www.cse.wustl.edu/~jain/talks/apf_csc.htm</u>

Washington University in St. Louis

_http://www.cse.wustl.edu/~jain/talks/apf_csc.htm_

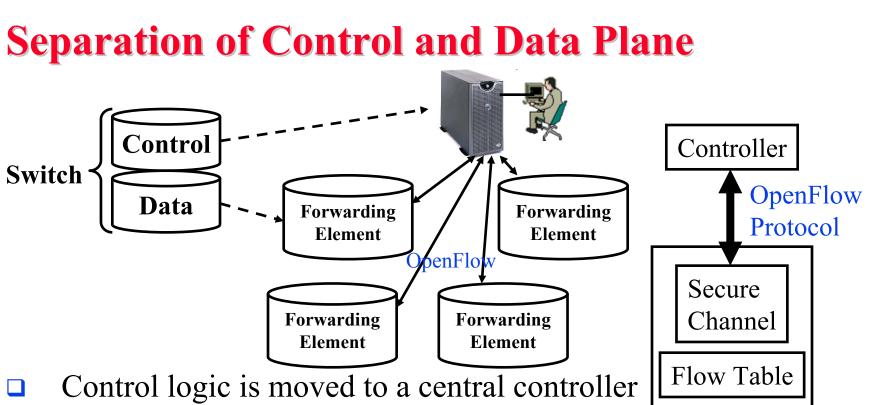
- 1. SDN 1.0 and SDN 2.0
- 2. Network Function Virtualization and Service Chaining
- 3. Function Virtualization and Service Chaining
- 4. Cloud of Clouds over WAN

Washington University in St. Louis

Planes of Networking

- Data Plane: All activities involving as well as resulting from data packets sent by the end user, e.g.,
 - Forwarding
 - > Fragmentation and reassembly
 - Replication for multicasting
- □ **Control Plane**: All activities that are <u>necessary</u> to perform data plane activities but do not involve end-user data packets
 - Making routing tables
 - Setting packet handling policies (e.g., security)

Dest.	Output Port	Next Hop

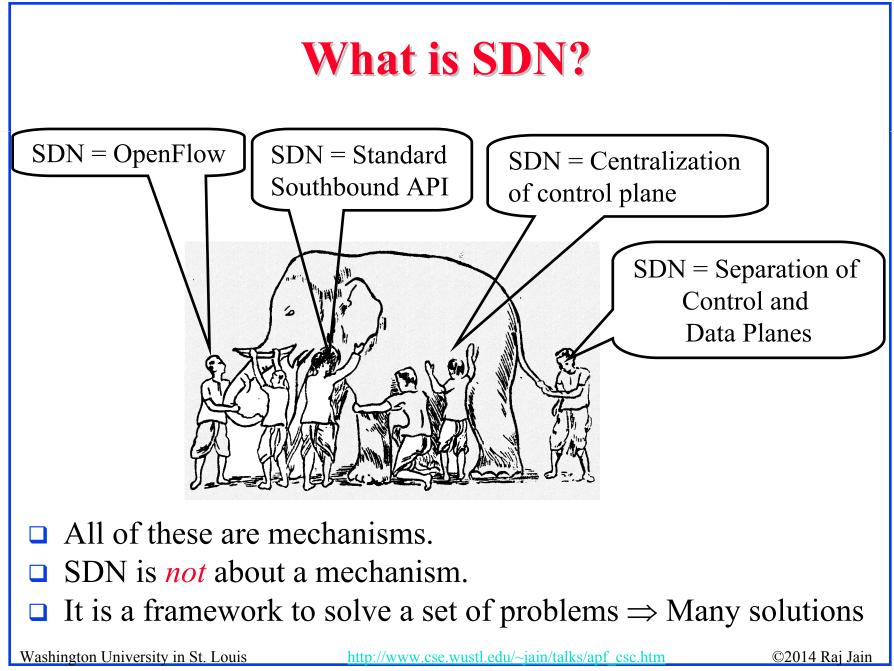

Ref: Open Data Center Alliance Usage Model: Software Defined Networking Rev 1.0," http://www.opendatacenteralliance.org/docs/Software_Defined_Networking_Master_Usage_Model_Rev1.0.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf csc.htm

Planes of Networking (Cont)

- □ **Management Plane**: All activities related to provisioning and monitoring of the networks
 - Fault, Configuration, Accounting, Performance and Security (FCAPS).
 - > Instantiate new devices and protocols (Turn devices on/off)
 - > <u>Optional</u> \Rightarrow May be handled manually for small networks.
- Services Plane: Middlebox services to improve performance or security, e.g.,
 - Load Balancers, Proxy Service, Intrusion Detection, Firewalls, SSL Off-loaders
 - > Optional \Rightarrow Not required for small networks



- Switches only have forwarding elements
- One expensive controller with a lot of cheap switches
- OpenFlow is the protocol to send/receive forwarding rules from controller to switches
- By programming the controller, we can quickly change the entire network behavior \Rightarrow Software Defined Networking

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_csc.htm_

ONF Definition of SDN

"What is SDN?

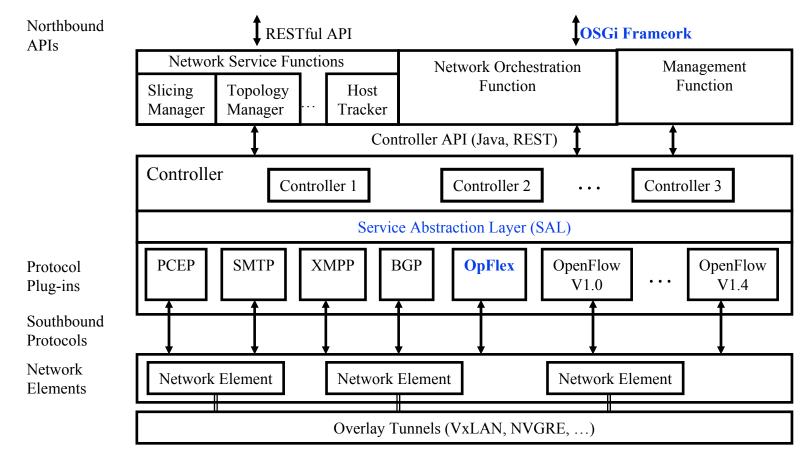
The physical separation of the network control plane from the forwarding plane, and where a control plane controls several devices."

- 1. Directly programmable
- 2. Agile: Abstracting control from forwarding
- 3. Centrally managed
- 4. Programmatically configured
- 5. Open standards-based vendor neutral

The above definition includes *How*. Now many different opinions about *How*. ⇒SDN has become more general. Need to define by *What*?

 Ref: https://www.opennetworking.org/index.php?option=com_content&view=article&id=686&Itemid=272&lang=en

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/apf_csc.htm


 ©2014 Raj Jain

8

What do We need SDN for?

- **1. Virtualization**: Use network resource without worrying about where it is physically located, how much it is, how it is organized, etc.
- **2. Orchestration**: Manage thousands of devices
- **3. Programmable**: Should be able to change behavior on the fly.
- 4. Dynamic Scaling: Should be able to change size, quantity
- **5. Automation**: Lower OpEx
- 6. Visibility: Monitor resources, connectivity
- 7. Performance: Optimize network device utilization
- 8. Multi-tenancy: Sharing expensive infrastructure
- **9. Service Integration**
- **10. Openness:** Full choice of Modular plug-ins
- 11. Unified management of computing, networking, and storage

SDN 2.0: OpenDaylight Style SDN

NO-OpenFlow (Not Only OpenFlow) Multi-Protocol
 New work in IETF XMPP, ALTO, I2RS, PCEP,

Linux Foundation

http://www.cse.wustl.edu/~jain/talks/apf_csc.htm_

Networking and Religion

Both are based on a set of beliefs

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_csc.htm_

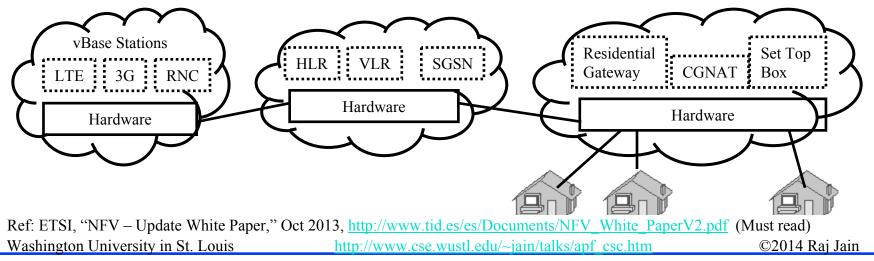
Current SDN Debate: What vs. How?

- SDN is easy if control plane is centralized but not necessary.
 Distributed solutions may be required for legacy equipment and for fail-safe operation.
- Complete removal of control plane may be harmful.
 Exact division of control plane between centralized controller and distributed forwarders is yet to be worked out
- SDN is easy with a standard southbound protocol like OpenFlow but one protocol may not work/scale in all cases
 - > Diversity of protocols is a fact of life.
 - There are no standard operating systems, processors, routers, or Ethernet switches.
- If industry finds an easier way to solve the same problems by another method, that method may win. E.g., ATM vs. MPLS.
 Washington University in St. Louis

Separation vs. Centralization

Separation of Control Plane

Centralization of Control


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf csc.htm_

Network Function Virtualization (NFV)

- Fast standard hardware ⇒ Software based Devices Routers, Firewalls, Broadband Remote Access Server (BRAS) ⇒ A.k.a. *white box* implementation
- 2. Virtual Machine implementation

 \Rightarrow Virtual appliances \Rightarrow All advantages of virtualization (quick provisioning, scalability, mobility, Reduced CapEx, Reduced OpEx, ...)

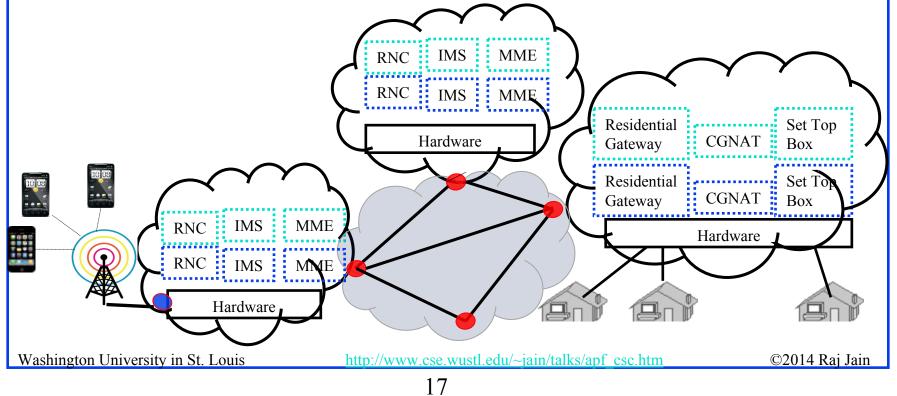
What can NFV do?

- **1. Virtualization**: Use network resource without worrying about where it is physically located, how much it is, how it is organized, etc.
- 2. Orchestration: Manage thousands of devices
- **3. Programmable**: Should be able to change behavior on the fly.
- 4. Dynamic Scaling: Should be able to change size, quantity
- **5.** Automation
- 6. Visibility: Monitor resources, connectivity
- 7. Performance: Optimize network device utilization
- 8. Multi-tenancy
- 9. Service Integration
- 10. Openness: Full choice of Modular plug-ins

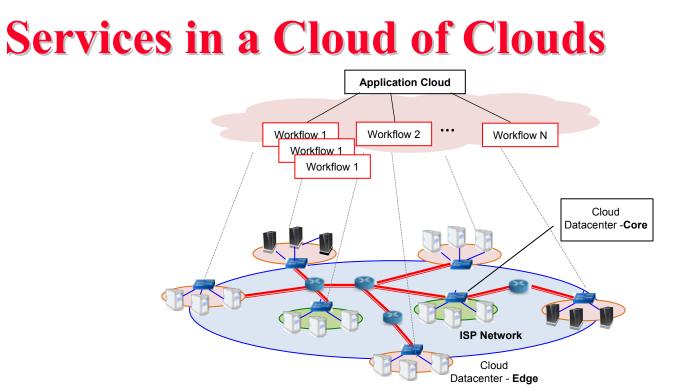
Note: These are exactly the **same** reasons why we need SDN.

Washington University in St. Louis

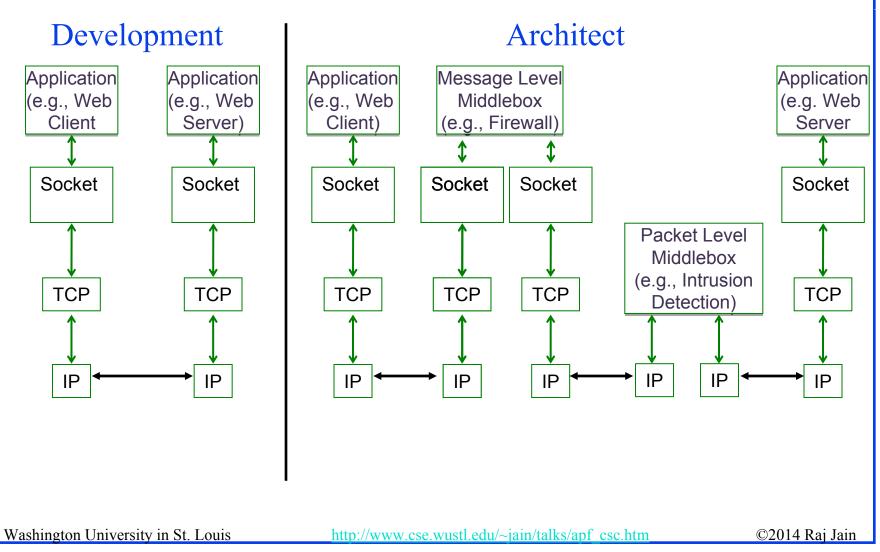
http://www.cse.wustl.edu/~jain/talks/apf_csc.htm_


Service-Infrastructure Separation

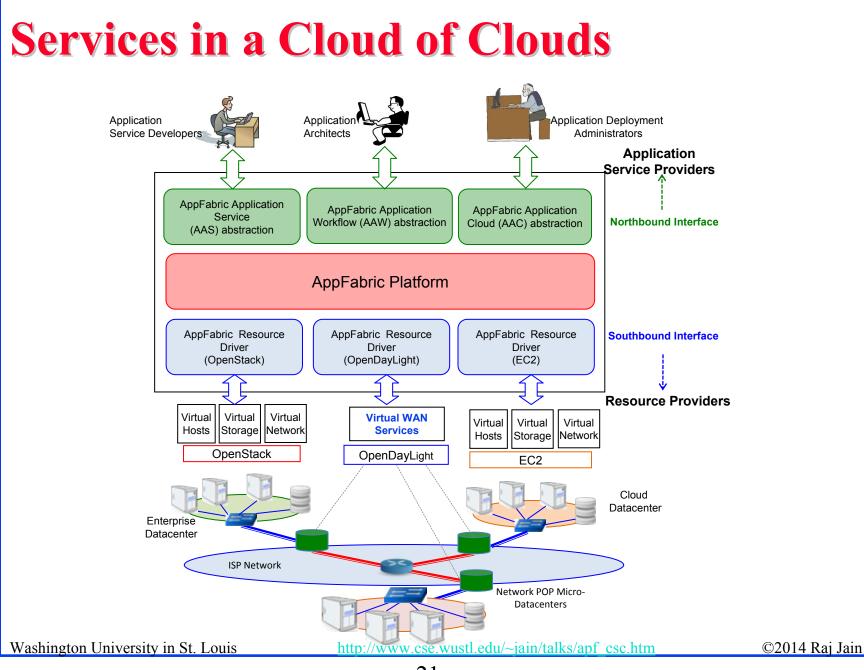
- □ With cloud computing, anyone can super-compute on demand.
 - Physical infrastructure is owned by Cloud Service Provider (CSP). Tenants get virtual infrastructure
 - > Win-Win combination
- With virtualization, an ISP can set up all virtual resources on demand
 - > Physical Infrastructure owned by NFV infrastructure service provider (NSP) and tenant ISPs get virtual NFVI services
 - > Win-Win combination


Service Chaining in a Multi-Cloud Multi-Tenant Environment

- □ VNFs (Virtual network fns) belong to tenants. Multiple tenants.
- □ Each Cloud belongs to a different Cloud Service Provider (CSP)
- □ Internet infrastructure belongs to an NFVI service provider (NSP)
- □ Service chain = Workflow


Any Function Virtualization (FV)

- Network function virtualization of interest to Network service providers
- But the same concept can be used by any other industry, e.g., financial industry, banks, stock brokers, retailers, mobile games, ...
- Everyone can benefit from:
 - Functional decomposition of there industry
 - Virtualization of those functions
 - ≻ Service chaining those virtual functions (VFs)
 ⇒ A service provided by the next gen ISPs



- □ Need to add/delete workflows as the load/locality changes
- □ Application **Developers** designing a workflow need not be aware of middleboxes, physical resources.
- Application Architects set guidelines for creation of new workflows including middleboxes
- Deployment Administrators set policies for quantity and location of resources inside various clouds.
- Also need to virtualize wide area networks just as it is done inside the clouds today
 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/apf_csc.htm
 ©2014 Raj Jain

Workflow Example

20

AppFabric Features

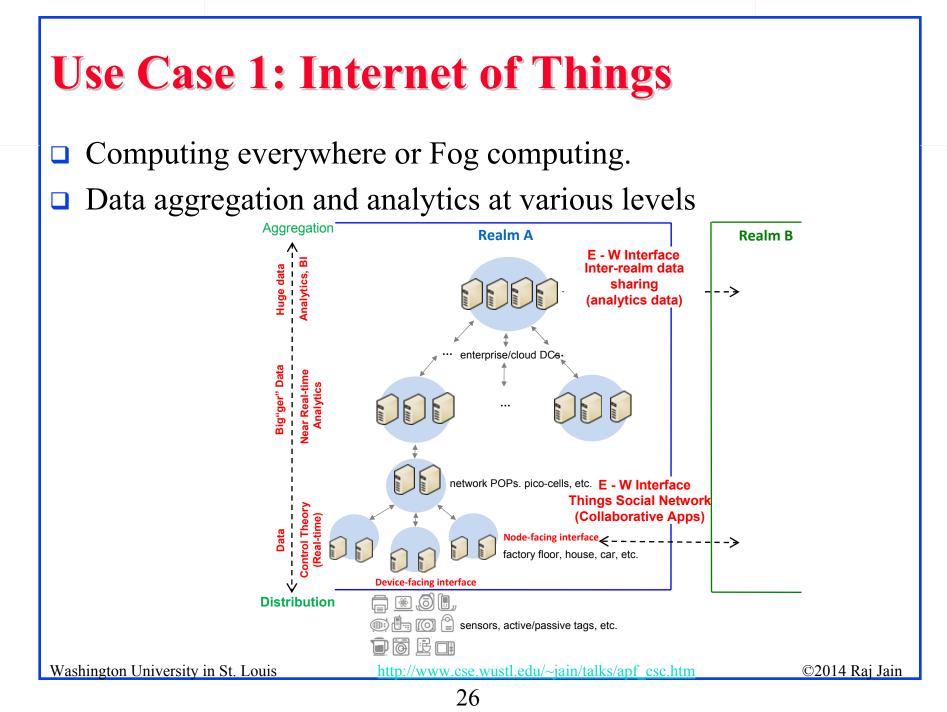
- Allows application architects to specify guidelines for creation of new workflows including middleboxes
- Allows application developers to specify their resource requirements and design their application without worrying about physical infrastructure
- □ Allows **Deployment Administrators** specify policies for quantity and location of resources inside various clouds.
- Automates the entire process of creating new workflows and installing them, managing them during runtime, uninstalling them as necessary
- Workflow creation includes virtual networks, computers, storage inside the clouds as well as the network between the clouds
- □ WAN bandwidth and latency is the key to placement. Allows manual approval and override.
- All interfaces initially XML based. GUI based in future. <u>Washington University in St. Louis</u> <u>http://www.cse.wustl.edu/~jain/talks/apf_csc.htm</u> future. <u>©2014 Raj Jain</u>

Resource Control

- Tenants keep complete control of their data.
 NSP does not have to look at the application data to enforce application level policies
- NSPs keep complete control of their equipment.
 tenants communicate their policies to NSP's control plane
- VFs and Middle boxes can be located anywhere on the global Internet (Of course, performance is best when they are close by)
- Tenants or NSPs can own OpenADN modules. NSPs can offer "Service Chaining" service

Washington University in St. Louis

Challenges in Service Chaining


Dynamic:

- > Forwarding changes with state of the servers, links, ...
- Cloud operators may want to move VMs themselves for security, reliability, performance, or in anticipation of load changes.
- QoS vs. Cost: Latency determined by link utilization. WAN links expensive. Need to keep the utilization high.
- **Content sensitive**:
 - > Different for different types of videos, read-writes, ...

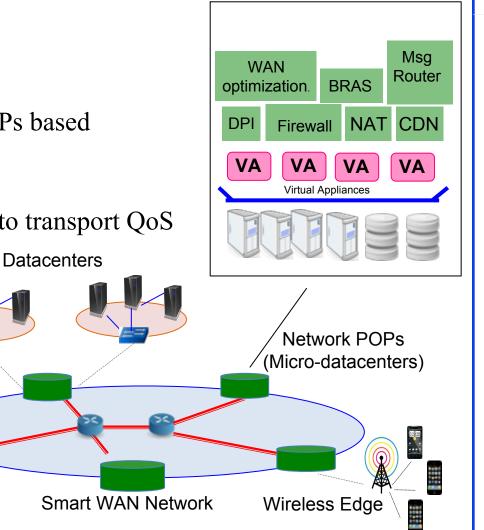
Distributed Control:

- Equipment belongs to infrastructure provider
- Data belongs to Tenants
- □ Massive Scale:
 - Billions of Users with different user context
- □ Stateful Services:
 - > All packets of a flow should be sent to the same replica
 - n Message level services (firewalls),
 - Packet level services (intrusion detection)

Washington University in St. Louishttp://www.cse.wustl.edu/~jain/talks/apfcsc.htm

Use Case 2: Smart WANs

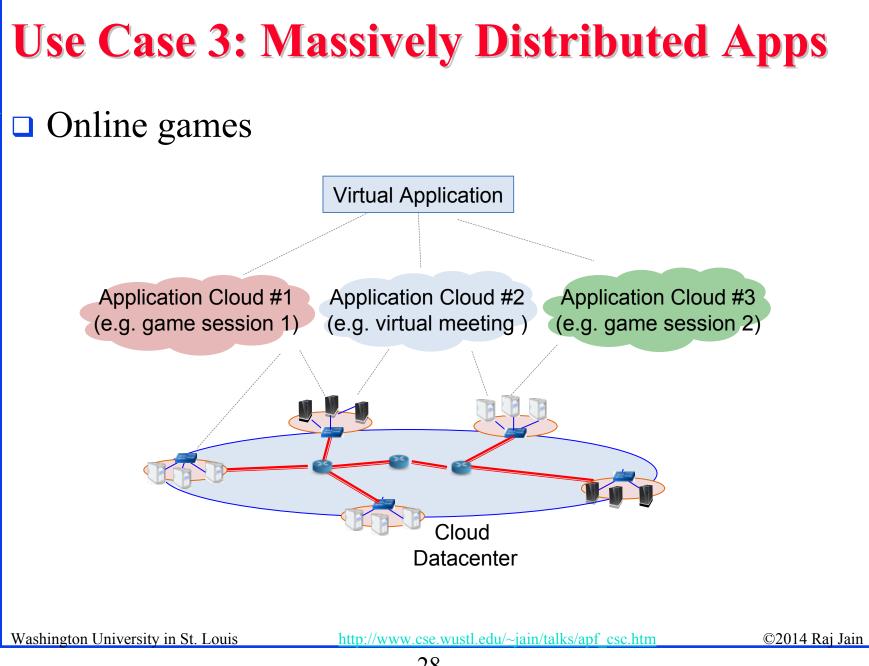
Service Chaining


Washington University in St. Louis

- Message-level Middleboxes
- Packet-level Middleboxes
- Dynamically place services at POPs based on application topology

Access

Networks


- Provide differentiated transport
- Contextual mapping of messages to transport QoS

©2014 Rai Jain

27

http://www.cse.wustl.edu/~jain/talks/apf csc.htm

Summary

- Virtual Networking Functions (VNFs) will be replicated and deployed globally
 ⇒ Need dynamic service chaining based on user, network, and application context
- Virtual functions useful not only for networking but also for all other global enterprises and games
 ⇒ New business opportunity for FV Infrastructure service
- 3. AppFabric allows customers to select multiple clouds from different providers and share wide area network infrastructure and specify their policies
- 4. WAN link capacity, utilization, and latency are key to the placement of VMs.
- 5. NSPs keep complete **control** over their resources. Tenants keep complete control over their traffic.

Washington University in St. Louis

References

 Raj Jain and Subharthi Paul, "Network Virtualization and Software Defined Networking for Cloud Computing - A Survey," IEEE Communications Magazine, Nov 2013, pp. 24-31, <u>http://www.cse.wustl.edu/~jain/papers/net_virt.htm</u>