Five Trends in Computing Leading to Multi-Cloud Applications and Their Management

Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu
Performance and Capacity Conference 2015, San Antonio, TX
November 5, 2015

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

- 1. Recent Trends in Networking:
 - 1. Software Defined Networking (SDN)
 - 2. Network Function Virtualization (NFV)
 - 3. Internet of Things (IoT)
 - 4. Computing in the Edge (Fog Computing)
 - 5. Inter-Cloud/Multi-Cloud Applications
- 2. Management of Generalized Multi-Cloud Applications

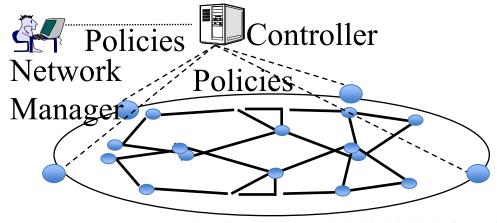
This research was made possible by NPRP grant # 6-901-2-370 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author[s].

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf cmg.htm

Clouds and Mobile Apps

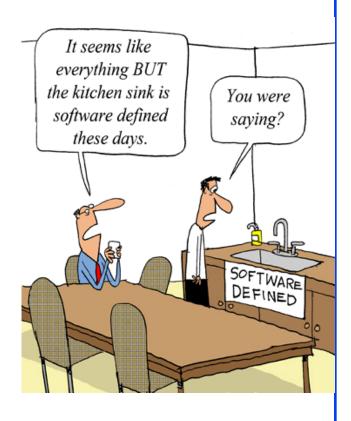
□ August 25, 2006: Amazon announced EC2
 ⇒ Birth of Cloud Computing in reality
 (Prior theoretical concepts of computing as a utility)
 \$4.6 B in 2014, \$6.2 B in 2015, a growth rate of 49% with 17% margins, much higher than the overall Amazon business



- June 29, 2007: Apple announced iPhone⇒ Birth of Mobile Internet, Mobile Apps
 - > App Market \Rightarrow \$1.99 Programs
 - > Almost all services are now mobile apps: Google, Facebook, Bank of America, ...

Trend 1: Software Defined Networking (SDN)

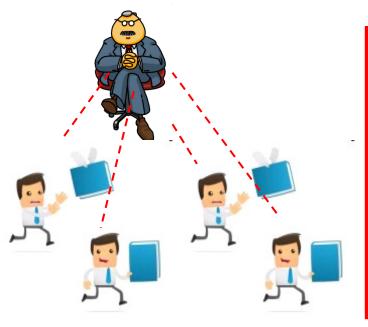
- 1. Abstract the Hardware: No dependence on physical infrastructure. Software API.
- 2. Programmable: Shift away from static manual operation to fully configurable and dynamic
- 3. Centralized Control of Policies: Policy delegation and management

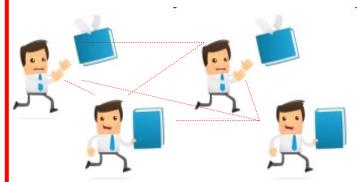

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Software Defined Anything (SDx)

- □ Tsunami of software defined things
 - Software Defined Networking (SDN)
 - Software Defined Datacenter (SDDC)
 - Software Defined Storage (SDS)
 - Software Defined Compute (SDC)
 - Software Defined Infrastructure (SDI)

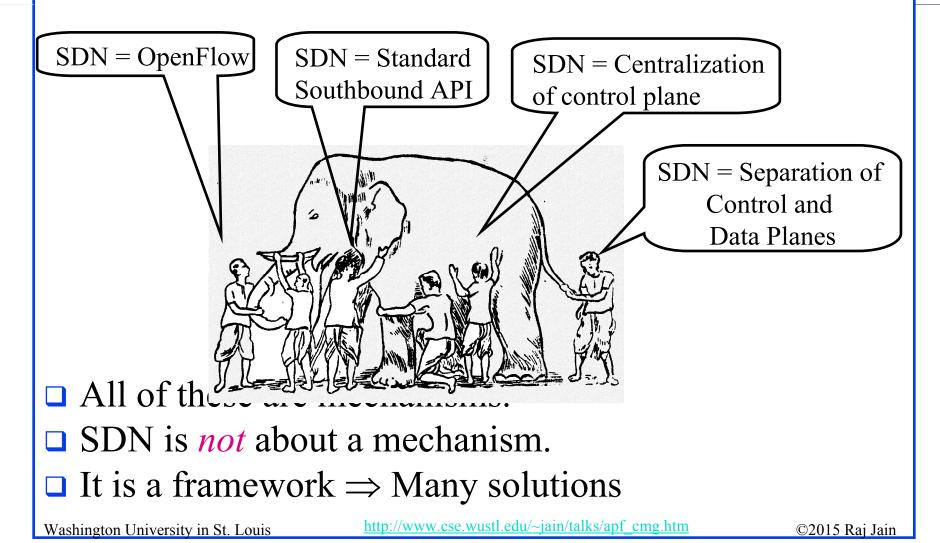

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Ten Benefits of SDN

- 1. **Programmability**: Can change behavior on the fly.
- 2. Automation
- 3. Orchestration: Manage thousands of devices
- 4. Visibility: Centralized monitoring of state
- 5. **Performance**: Optimize network device utilization **FCAPS** = Fault, Configuration, Accounting, Performance, Security
- 6. Virtualization: Use resources without worrying about location, size, etc.
- 7. **Dynamic Scaling**: Can change size, quantity
- 8. Multi-tenancy
- 9. Service Integration
- 10. Openness: Full choice of Modular plug-ins

Centralized vs. Distributed


- □ Fast Response to changes
- □ Fast Consistency
- \square Less overhead \Rightarrow Scalable
- Single Point of Failure

- ☐ Time to converge
- □ Slow consistency
- Not scalable
- Fault Tolerant

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

What SDN is Not?

Four Confusions About SDN

1. Policies vs. Control:

Control = All bits and messages not sent by the user In IP control includes all headers and all routing messages.

2. Separation of Control Plane:

Elements have only data plane and have no brains

3. SDN vs. OpenFlow:

OpenFlow is the father of SDN but not SDN.

4. Need OpenFlow: OpenFlow is micro-management.

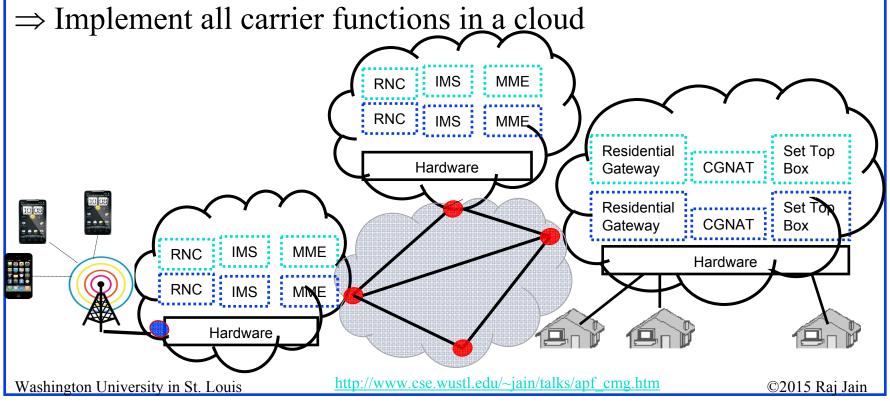
It is not scalable.

For large infrastructure, need scalable solutions.

Separation vs. Centralization

Separation of Control Plane

Centralization of Policies


Micromanagement is not scalable

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Trend 2: Network Function Virtualization

- Standard hardware is fast and cheap
 - ⇒ No need for specialized hardware
- □ Implement all functions in software
- \square Virtualize all functions \Rightarrow Create capacity on demand

Service-Infrastructure Separation

- □ With cloud computing, anyone can super-compute on demand.
 - > Physical infrastructure is owned by Cloud Service Provider (CSP). Tenants get virtual infrastructure
 - > Win-Win combination
- With virtualization, an ISP can set up all virtual resources on demand
 - > Physical Infrastructure owned by NFV infrastructure service provider (NSP) and tenant ISPs get virtual NFVI services
 - > Win-Win combination

Any Function Virtualization (FV)

- Network function virtualization of interest to Network service providers
- But the same concept can be used by any other industry, e.g., financial industry, banks, stock brokers, retailers, mobile games, ...
- Everyone can benefit from:
 - > Functional decomposition of there industry
 - > Virtualization of those functions
 - > Service chaining those virtual functions (VFs)
 - \Rightarrow A service provided by the next gen ISPs

Carrier App Market: Lower CapEx

Virtual IP Multimedia System

Available on the App Store

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Trend 3: Smart Everything

Smart Watch

Smart TV

Smart Car

Smart Health

Smart Home

Smart Kegs

Smart Space

Smart Industries

Smart Cities

Washington University in St. Louis

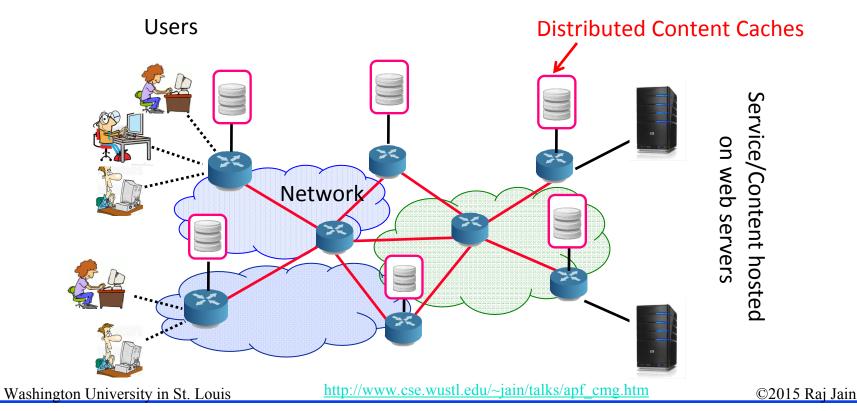
http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

What's Smart?

- \bigcirc Old: Smart = Can think \Rightarrow Can compute
- Now: Smart = Can find quickly, Can Delegate⇒ Communicate = Networking
- □ Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...

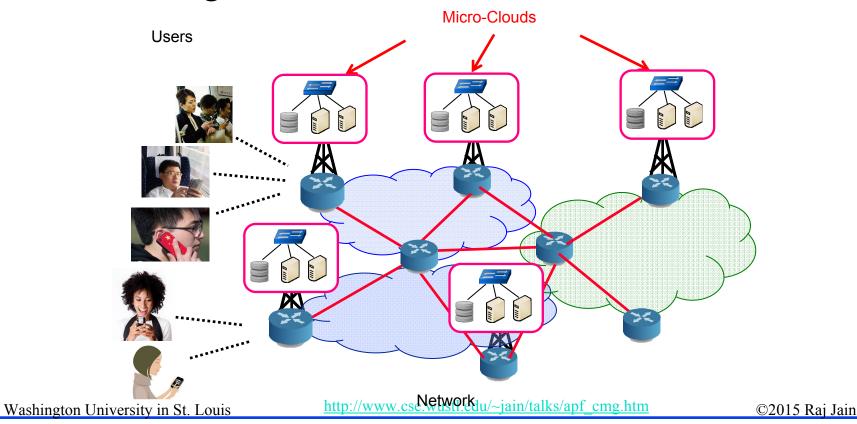
Communicate

Not-Smart

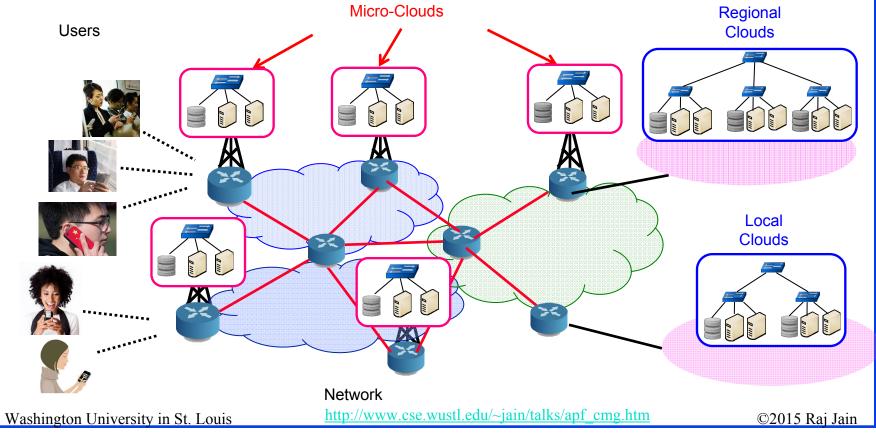

Smart

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

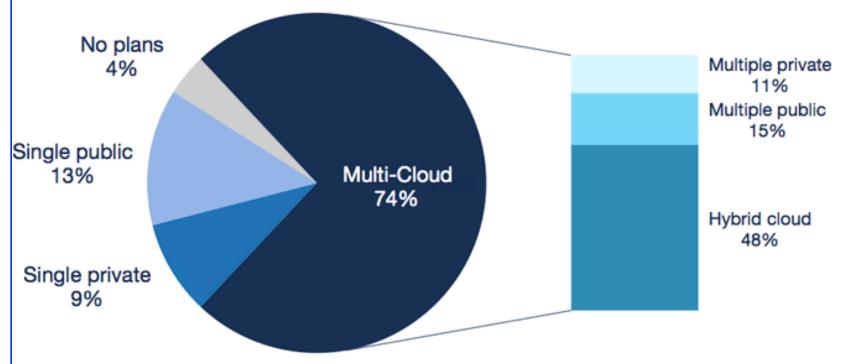

Past: Data in the Edge

□ To serve world-wide users, latency was critical and so the data was replicated and brought to edge


Trend 4: Computation in the Edge

□ To service mobile users/IoT, the computation needs to come to edge ⇒ Micro-cloud on the tower

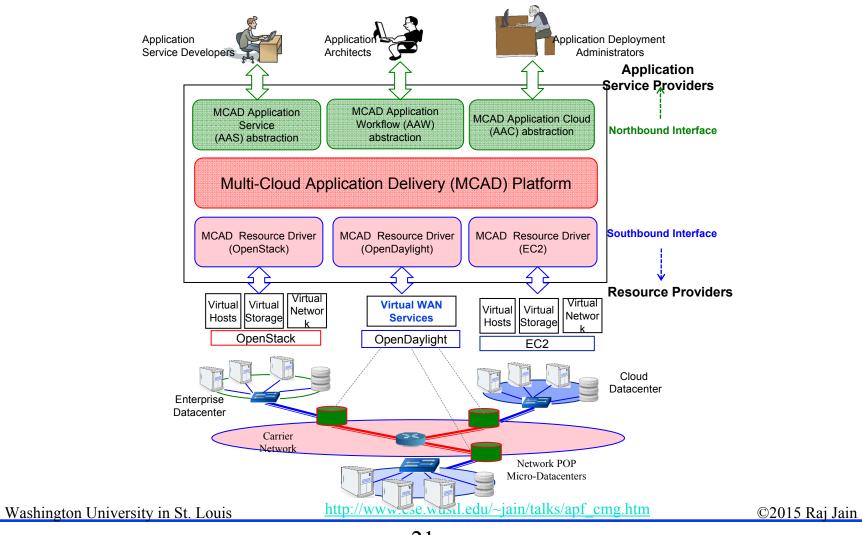
Trend 5: Multi-Cloud


■ Larger and infrequent jobs serviced by local and regional clouds ⇒ Fog Computing

Trend: Multi-Clouds

Enterprise Cloud Strategy

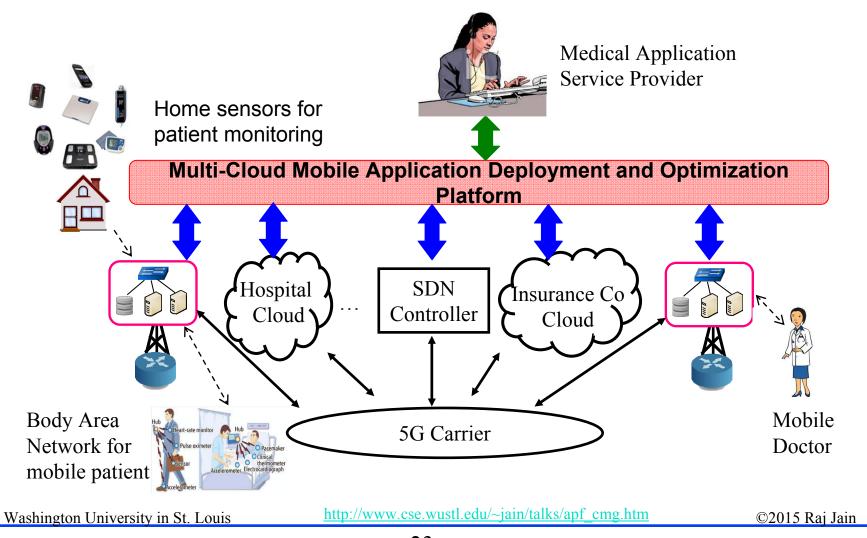
1000+ employees

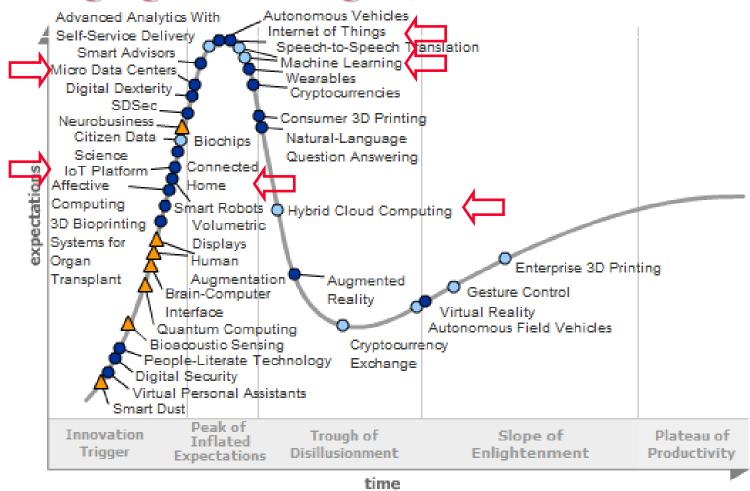


Source: RightScale 2014 State of the Cloud Report

■ Most companies use more than one cloud.

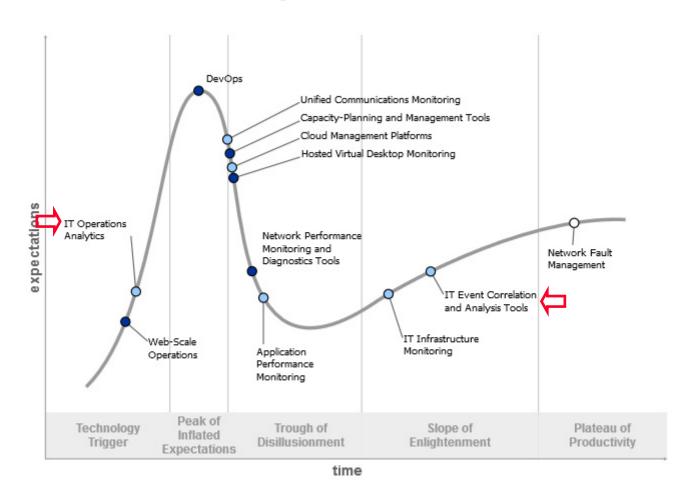
Ref: http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2014-state-cloud-survey Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm


Software Defined Multi-Cloud FCAPS Management


MCAD Features

- Automate the entire process of creating new workflows and installing them, managing them during runtime, uninstalling them as necessary
 - > Allow **Deployment Administrators** specify policies for quantity and location of resources inside various clouds.
- Workflow creation includes virtual networks, computers, storage inside the clouds as well as the network between the clouds
- WAN bandwidth and latency is the key to placement. Allows manual approval and override.
- Physical infrastructure owners keep complete control over their resources while the tenant service providers can deploy their applications according to their desired policies
- All communication is via APIs. All interfaces initially XML based. GUI based in future.

Mobile Healthcare Use Case



Gartner Hype Cycle for Emerging Technologies, 2015

Ref: Gartner, "Hype Cycle for Emerging Technologies, 2015," July 2015, [Available to subscribers only], http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm ©2015 Raj Jain

Gartner's Hype Cycle for Performance Management 2015

Ref: Gartner, "Hype Cycle for IT Infrastructure Availability and Performance Management, 2015"

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Summary

- SDN is about abstracting the hardware, providing programmability, and centralizing policy control
- 2. Carriers are moving towards "Network Function Virtualization" ⇒ Opportunity for key "Function virtualization" in other industry
- IoT will impact CIO's \Rightarrow FCAPS
- Computation is moving to the Edge ⇒ Fog Computing⇒ Multi-Cloud/Inter-Cloud
- 5. Our MCAD abstracts the cloud interfaces and allows automated management of multi-cloud applications

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Recent Papers

- Subharthi Paul, Raj Jain, Mohammed Samaka, Jianli Pan, "Application Delivery in Multi-Cloud Environments using Software Defined Networking," Computer Networks Special Issue on cloud networking and communications, Available online 22 Feb 2014, http://www.cse.wustl.edu/~jain/papers/comnet14.htm
- Raj Jain and Subharthi Paul, "Network Virtualization and Software Defined Networking for Cloud Computing A Survey," IEEE Communications Magazine, Nov 2013, pp. 24-31, http://www.cse.wustl.edu/~jain/papers/net_virt.htm
- Subharthi Paul, Raj Jain, Mohammed Samaka, Aiman Erbaud, "Service Chaining for NFV and Delivery of other Applications in a Global Multi-Cloud Environment," ADCOM 2015, Chennai, India, September 19, 2015, http://www.cse.wustl.edu/~jain/papers/adn_in15.htm
- Raj Jain, Mohammed Samaka, "Application Deployment in Future Global Multi-Cloud Environment," The 16th Annual Global Information Technology Management Association (GITMA) World Conference, Saint Louis, MO, June 23, 2015, http://www.cse.wustl.edu/~jain/papers/apf gitp.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Recent Papers (Cont)

Deval Bhamare, Raj Jain, Mohammed Samaka, Gabor Vaszkun, Aiman Erbad, "Multi-Cloud Distribution of Virtual Functions and Dynamic Service Deployment: OpenADN Perspective," Proceedings of 2nd IEEE International Workshop on Software Defined Systems (SDS 2015), Tempe, AZ, March 9-13, 2015, 6 pp.

http://www.cse.wustl.edu/~jain/papers/vm_dist.htm

Recent Talks

- Raj Jain "Application Deployment in Future Global Multi-Cloud Environment," OIN Workshop, Saint Louis, MO, October 20, 2015, http://www.cse.wustl.edu/~jain/talks/apf_oin.htm
- Raj Jain, "Virtualization and Software Defined Networking (SDN) for Multi-Cloud Computing," Invited talk at Indian Institute of Science, Bangaluru, September 18, 2014, http://www.cse.wustl.edu/~jain/talks/apf iis.htm
- □ Raj Jain, "AppFabric: Application Deployment and Service Chaining in Future NFV Cloud WAN Environments," Cisco Research Seminar, San Jose, CA, May 15, 2014, http://www.cse.wustl.edu/~jain/talks/apf_csc.htm
- □ Raj Jain, "SDN and NFV: Facts, Extensions, and Carrier Opportunities," AT&T Labs SDN Forum Seminar, April 10, 2014, http://www.cse.wustl.edu/~jain/papers/adn_att.htm

Acronyms

	ATM	Asynchronous Transfer Mode
	ECN	Explicit congestion notification
	EFCI	Explicit Forward Congestion Indication
	FECN	Forward Explicit Congestion Notification
	GB	Gigabyte
	IEEE	Institution of Electrical and Electronic Engineering
	IETF	Internet Engineering Task Force
	IoT	Internet of Things
	IP	Internet Protocol
	IRTF	Internet Research Task Force
	ITU	International Telecommunications Union
	LAN	Local Area Network
	LTE	Long Term Evolution
	MHz	Mega Hertz
	OpenADN	Open Application Delivery Networking

Software Defined Networking

Washington University in St. Louis

SDN

http://www.cse.wustl.edu/~jain/talks/apf_cmg.htm

Acronyms (Cont)

□ TCP Transmission Control Protocol

□ TV Television

□ VM Virtual Machine

■ WAN Wide Area Network

■ WiFi Wireless Fidelity

■ WiMAX Worldwide Interoperability for Microwave Access