Network Virtualization and Application Delivery Using Software Defined Networking

Project Leader: Subharthi Paul Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Invited talk at Case Western Reserve University, May 23, 2013

These slides and audio/video recordings are available at: <u>http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

- 1. Five reasons to virtualize
- 2. Five Innovations of SDN
- 3. Five Innovations of NFV
- 4. Our Research: Open Application Delivery

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

Virtualization of Life

$\Box \text{ Internet} \Rightarrow \text{Virtualization}$

- □ No need to get out for
 - > Office
 - Shopping
 - Entertainment
 - > Education

- Virtual Workplace
- □ Virtual Shopping
- Virtual Education
- Virtual Sex
- Virtual Computing

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

5 Reasons to Virtualize

- 1. Sharing: Break up a large resource Large Capacity or high-speed
- 2. Isolation: Protection from other tenants
- 3. Aggregating: Combine many resources in to one
- 4. Dynamics: Fast allocation, Change/Mobility, load balancing
- 5. Ease of Management \Rightarrow Cost Savings. fault tolerance

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.h....

Virtualization in Computing

□ Storage:

- > Virtual Memory ⇒ L1, L2, L3, ... ⇒ Recursive
- > Virtual CDs, Virtual Disks (RAID), Cloud storage

Computing:

➢ Virtual Desktop ⇒ Virtual Server ⇒ Virtual Datacenter
Thin Client ⇒ VMs ⇒ Cloud

□ **Networking**: Plumbing of computing

- Virtual Channels, Virtual LANs, Virtual Private Networks
- > Quick review of recent technologies for network virtualization

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

- VM vendors: S/W NICs in Hypervisor w Virtual Ethernet Bridge (VEB)(overhead, not ext manageable, not all features)
- 2. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus
- 3. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): 802.1Qbg (s/w upgrade), 802.1Qbh (new switches)
 Washington University in St. Louis
 <u>http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm</u> ©2013 Raj Jain

2. Bridge Port Extension

 Multiple physical bridges to make a single virtual bridge with a large number of ports
 ⇒ Easy to manage and configure

IEEE 802.1BR

- 1. Virtual Extensible Local Area Networks (VXLAN)
- Network Virtualization using Generic Routing Encapsulation (NVGRE)
- 3. Stateless Transport Tunneling Protocol (STT)
- \Rightarrow Network Virtualization over L3 (NVO3) group in IETF

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

4. Multi-Site

Better to keep VM mobility in a LAN (IP address changes if subnet changes)

□ Solution: IP encapsulation

Transparent Interconnection of Lots of Links (TRILL)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

Levels of Network Virtualization

Clouds and Mobile Apps

- August 25, 2006: Amazon announced EC2 ⇒ Birth of Cloud Computing in reality (Prior theoretical concepts of computing as a utility)
- Web Services To Drive Future Growth For Amazon (\$2B in 2012, \$7B in 2019)
 Forbes, Aug 12, 2012
- June 29, 2007: Apple announced iPhone ⇒ Birth of Mobile Internet, Mobile Apps
 - Almost all services are now mobile apps: Google, Facebook, Bank of America, ...
 - > Almost all services need to be global (World is flat)
 - > Almost all services use cloud computing

Networks need to support efficient service setup and delivery

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

Application Delivery in a Data Center

- **Replication**: Performance and Fault Tolerance
 - \checkmark If Load on S1 >0.5, send to S2
 - ✓ If link to US broken, send to UK
- **Content-Based Partitioning:**
 - > Video messages to Server S1
 - Accounting to Server S2

Context Based Partitioning:

- > Application Context: Different API calls
 - Reads to S1, Writes to S2
- > User Context:
 - ✓ If Windows Phone user, send to S1
 - \checkmark If laptop user, send to HD, send to S2

□ **Multi-Segment**: User-ISP Proxy-Load Balancer-Firewall-Server

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

Our Solution: OpenADN

- Open Application Delivery Networking Platform Platform = OpenADN aware clients, servers, switches, and middle-boxes
- □ Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing⇒ Global datacenter

OpenADN: 5 Innovations

- 1. Uses the latest in networking:
 - 1. Software defined networking
 - 2. OpenFlow
- Cross-Layer Communication
 OpenADN tags: Layer 7 Proxies without layer 7
 visibility (MPLS like Labels => APLS)
- 3. ID/Locator Split
- 4. Late Multi-stage binding

5. Rule-Based Delegation

 Ref: S. Paul, Raj Jain, "OpenADN: Mobile Apps on Global Clouds Using OpenFlow and Software Defined Networking,"

 First Int. workshop on Management and Security technologies for Cloud Computing (ManSec-CC) 2012, December 7, 2012, IEEE Globecom 2012, http://www.cse.wustl.edu/~jain/papers/adn_gc12.htm

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

- Control Plane = Making forwarding tables
- Data Plane = Using forwarding tables
- Once vs. Billion times per second, Complex vs. fast
- One expensive controller with lots of cheap switches

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

2. Flow-based control

- Data/disk/Memory sizes are going up by Moore's Law
- Packet size has remained 1518 bytes since 1980
- □ Multimedia, big data \Rightarrow Packet Trains $\square \square \square \square \square$
- □ Flow is defined by L2-L4 headers
- $\Box \quad \text{Decide once, use many times} \Rightarrow \text{Execution performance}$

Centralized vs. **Distributed**

- Consistency
- □ Fast Response to changes
- Easy management of lots of devices

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

SDN Impact

- □ Why so much industry interest?
 - Commodity hardware
 - \Rightarrow Lots of cheap forwarding engines \Rightarrow Low cost
 - > Programmability \Rightarrow Customization
 - > Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly
- □ Tsunami of software defined devices:
 - Software defined wireless base stations
 - Software defined optical switches
 Programmable photonic layer
 - Software defined routers

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

Network Function Virtualization (NFV)

- Fast standard hardware ⇒ Software based Devices Routers, Firewalls, BRAS (Broadband Remote Access Server)
- Function Modules (Both data plane and control plane)
 ⇒ DHCP (Dynamic Host control Protocol), NAT (Network Address Translation), Rate Limiting, HLR (Home Location Register), ...

NFV (Cont)

3. Virtual Machine implementation \Rightarrow All advantages of virtualization (quick provisioning, scalability, mobility,...)

4. Thin Real-time OS \Rightarrow Minimize latency, max performance, Large scale sharing

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

NFV (Cont)

- Standard APIs: New ISG (Industry Specification Group) in ETSI (European Telecom Standards Institute) set up in November 2012
- Complementary to SDN. One does not depend upon the other. You can do SDN only, NFV only, or SDN and NFV.

http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm

Key Features of OpenADN

- Edge devices only.
 Core network can be current TCP/IP based,
 OpenFlow or future SDN based
- Coexistence (Backward compatibility): Old on New. New on Old
- 3. Incremental Deployment
- 4. Economic Incentive for first adopters
- 5. Resource owners (ISPs) keep complete control over their resources

Most versions of Ethernet followed these principles. Many versions of IP did not.

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/talks/adn_cw

Summary

- 1. Cloud computing
 - \Rightarrow Virtualization of computing, storage, and <u>networking</u> \Rightarrow Numerous recent standards related to networking virtualization both in IEEE and IETF
- 2. Centralization of Control plane \Rightarrow Hiearchy of controllers. Not just one controller.
- 3. Standardization of Southbound, Northbound, and East-west APIs ⇒ Software Defined Networking (SDN)
- 4. NFV will allow large scale deployment of networking devices using standard hardware.
- 5. OpenADN enables delivery of applications using Northbound SDN API

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_cwr.htm