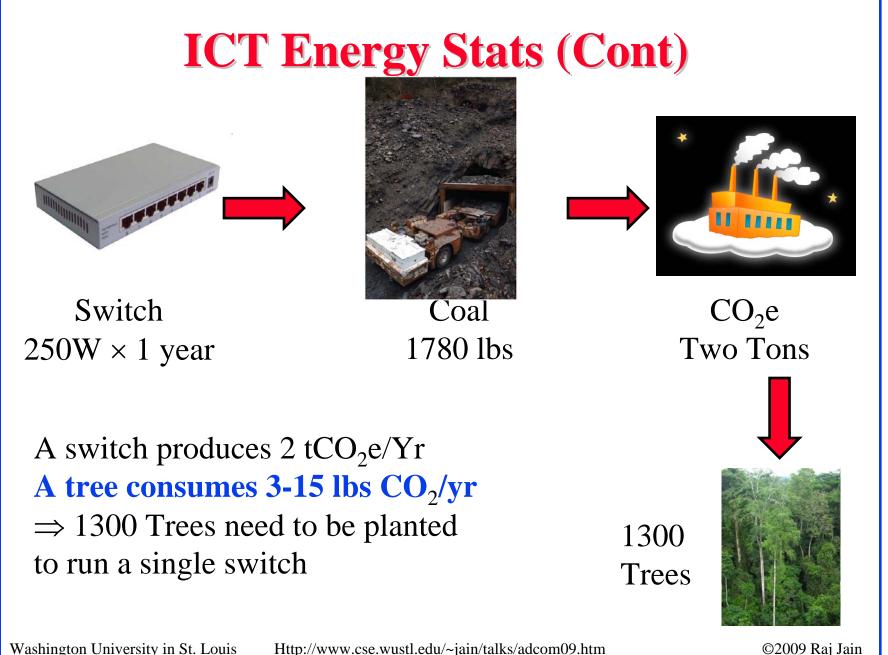
Green Networking in the Next Generation Internet: Challenges and Issues

Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu

ADCOM 2009, Bangalore, India, December 14, 2009 Slides and Audio/Video recordings of this talk are at:

http://www.cse.wustl.edu/~jain/talks/adcom09.htm



- 1. Why Green Networking?
- 2. Why is the Current Internet not green?
- What is being done to make it green?
 Recent Developments: Energy Efficient Ethernet , Proxy, EPA Energy Star
- 4. Further research problems

Info and Comm Technology Energy Stats

- Aviation industry produces 2-3% of the green house gases
- Information and communication technology (ICT) equipment uses electricity that produces 2-3% of the green house gases.
- □ ICT emissions are doubling every 4 years
 ⇒ fastest growing sector

ICT Energy Stats (Cont)

One Small Computer Server

One SUV with 15 miles/gallon

Ref: http://earth911.com/blog/2008/12/22/servers-suvs-15-mpg/

Washington University in St. Louis Http://www.cse.wustl.edu/~jain/talks/adcom09.htm

©2009 Raj Jain

ICT Energy Stats (Cont)

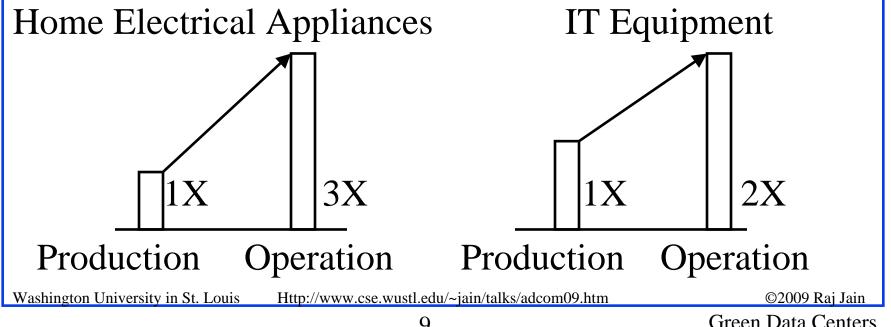
- Idle servers consume 50 to 80% of power at maximum load
- Energy is 2nd highest data center costs (10% rising to 50%)
- Cooling accounts for 20-50% of the total power consumption
- One PC left on 24x7 uses electricity emitting 1500 lbs of CO₂ per year

□Ref: An inefficient truth, http://www.globalactionplan.org.uk

□Ref: HTTP://UCLUE.OM/INDEX.PHP?XQ=724

Ref: http://www.ee.unimelb.edu.au/people/rst/talks/files/Tucker_Green_Plenary.pdf

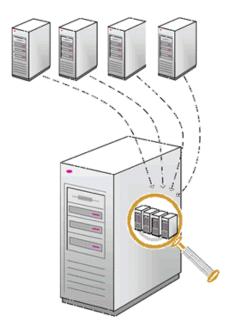
Ref: http://www.nanog.org/mtg-0802/levy.html


Ref: Http://esdc.pnl.gov/

Whole Life View

Production vs. Operation

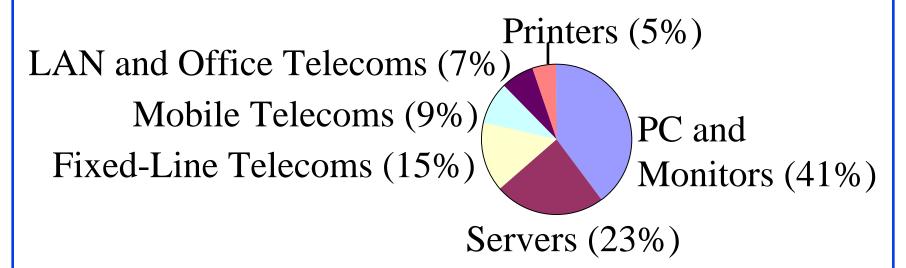
- □ Typical appliances (refrigerators, washer, dryer) have long life cycle
- □ IT appliances have short life cycle, high-energy manufacturing
- \Box Short life \Rightarrow End-of-Life important \Rightarrow Recycle


Green Operation of Data Centers

□ Virtualize Servers:

Multiple servers on one hardware \Rightarrow Reduction in servers, floor space, cooling needs

- Locate data centers near sources of renewable energy (avoid 15% electric transmission losses)
- Cost of fiber optic cable is 5-10% of the cost of electricity transmission
- Move computing to cheap power (Follow the moon)



©2009 Raj Jain

Effect of Networking

- □ PC's are the major power consumers
- Networking devices account for about 15% of a data center's total energy consumption

Ref: N. Chilamkurti, et al, "Green Networking for Major Components of Information Communication Technology Systems," 25th September 2009, EURASIP Journal of Wireless Communications and Networks

Networks are Green Enabler

D Telecommuting:

Video Conferencing

Distance Learning

Washington University in St. Louis Http:

Http://www.cse.wustl.edu/~jain/talks/adcom09.htm

13

Telecommuting

□ ICT can help reduce 5

times its own footprint

Network Component Design

- □ Energy efficient components
- Efficient power adapters
- □ Eliminate fans or adjust based on needs
- □ Auto hibernate unused ports, devices
- □ Adjust signal strength based on cable length
- □ Challenge: Power over Ethernet

 \Box 15.4W/Port 384 port switch \Rightarrow 5.9kW

- \Box Increasing to 56W/Port \Rightarrow Larger battery backup
- □ Can save 2/3 by turning of VOIP phones 16 hours/day

Future Internet Projects

- In 2005 US National Science Foundation started a large research and infrastructure program on next generation Internet
- Q: How would you design Internet today? Clean slate design.
- □ "Future Internet Design" (FIND): 48+ projects
- "Global Environment for Networking Innovations" (GENI): 29+ projects
- □ European Union: 7th Framework program
- Japan: AKARI (A small light in the dark pointing to the future)
- □ China, Korea, Australia, ...20+ countries

Problem with Current Internet

 Assumes live and awake end-systems Does not allow communication while sleeping.
 Many energy conscious systems today want to sleep.

Ref: [JAI06]

Always-on to Always-Available

	Device	Always- On	Always- Available
	DSL	1.5 W	0.8 W
= wiiiw	Residential Gateway	11 W	8 W
	Media Server	100 W	10 W
	Network Storage	20 W	2 W
	Settop Box	20 W	10 W
1003	Applications	120 W	10 W
	Total	272.5 W	40.8 W
		100%	15%

Ref: Broadband Forum

oet

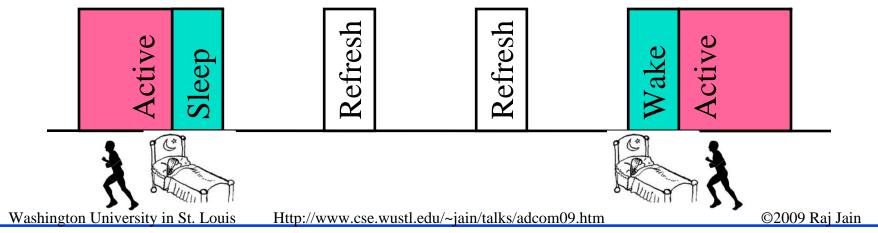
Network Performance and Sleep States

- Processors have multiple performance and sleep states
 Performance states help when the processor is active
 Sleep states help when the processor is inactive
- Dynamically set the forwarding capacity of a port based on load: 1 Gbps, 100 Mbps, 10 Mbps, disabled
- □ Network link utilization is low
 - \Rightarrow Disable ports, line cards, and switches when idle
- □ Ports are awakened when packets arrive
- A centralized power controller monitors the network and controls all ports
- **D** Edge devices transmit packets in bursts

Why Network Devices Cant Sleep?

- Broadcast packets: ARP. Continuous Hellos?
 1 to 3 packets per second
- **DHCP** leases expires
- □ Name resolution (NetBIOS)
- □ Management (SNMP and Pings)
- Broadcast traffic in office:

ARP	NBNS	IPX	NBDGM	LLC	ANS	RPC	BOOTP	NTP	Other
46%	23%	10%	6%	3%	3%	3%	2%	1%	3%

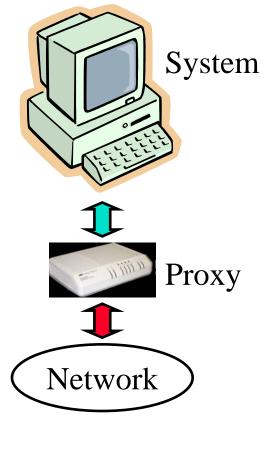

Multicast traffic in office:

HSRP	SSDP	PIM	IGMP	EIGRP	Other	NBNS = Netbios Name Service NBDGM = Netbios Datagram Service
60%	25%	6%	5%	2%	2%	HSRP=Hot-Standby Router Protocol SSDP=Simple Service Discovery Protocol

Ref: S. Nedevschi, et al, "Skilled in the art of being idle: reducing energy waste in networked Systems," NSDI 2009.

Energy Efficient Ethernet

- □ IEEE 802.3az. To finish Sept 2010..
- □ LAN utilization is low, typically $1\% \Rightarrow 90\%$ savings
- □ Low Power Idle: 1 us wake up
 - During idle period, NICs sleep
 - □ Wake up periodically to check


Energy Efficient Ethernet (Cont)

- □ Infineon announced gigabit EEE in August 2009
- □ Next: ADSL Low power mode

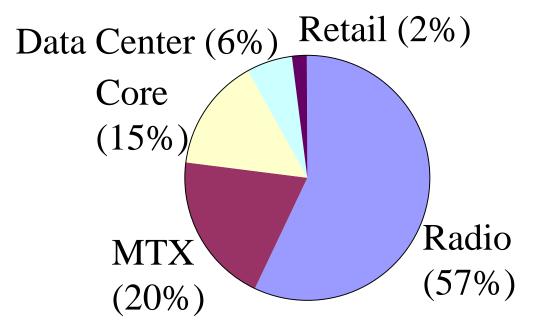
ECMA TC32-TG21 Proxy Support

- Host transfers its network state to proxy and goes to sleep
- Proxy responds to routine traffic (ARP, DHCP, TCP, ICMP, SNMP, SIP, ...)
- □ Wakes up the host if needed
- Proxy can be in host NIC or separate box
- ECMA TC32-TG21 standard on "Proxy support for Sleep Modes," March 2010

EPA Energy Star

- □ Started in 1992 by US EPA
- □ Has been adopted by EU
- Covers many appliances
- □ Includes PCs, Laptops,
- □ V5.0 adopted in June 2009
- □ V5.0 includes **proxy** support
- Work started to include servers: Tier 1 released for comments. Tier 2 started in September 2009
- □ Tier 2 will include **EEE**
- Ref: EPA, "ENERGY STAR Program Requirements for Computers, Version 5.0, 2009.

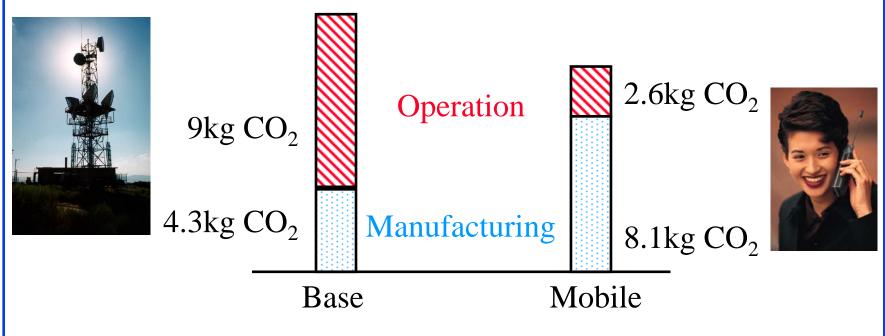
Washington University in St. Louis Http://www.cse.wustl.edu/~jain/talks/adcom09.htm



©2009 Rai Jain

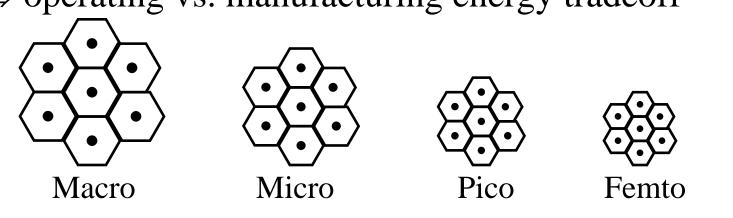
Wireless Telecommunications

□ 57% of the operator's electricity use is in radio access



Ref: Tomas Edler, "Green Base Stations – How to Minimize CO₂ Emission in Operator Networks," Ericsson, Bath Base Station Conference 2008

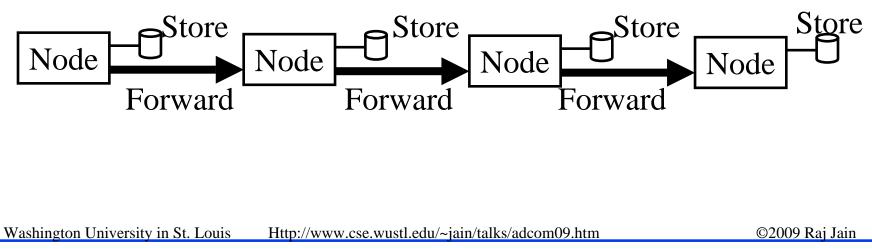
Wireless Telecommunications (Cont)


Base stations use most of the energy during operation
 Subscriber devices use most of the energy in manufacturing

Ref: Tomas Edler, "Green Base Stations – How to Minimize CO₂ Emission in Operator Networks," Ericsson, Bath Base Station Conference 2008

Wireless Telecommunications (Cont)

- Power consumption is a major issue in emerging markets
- □ Use renewable energy at base station
- □ Sleep techniques to allow power to scale with load
- Macro vs. Micro vs. Pico vs. Femto cells
 Energy is proportional to distance
 ⇒ operating vs. manufacturing energy tradeoff


Research Topics

- □ Energy aware network (H/W+Topology) design
- Energy aware protocol design
- □ Traffic shaping for energy saving ⇒ Allowing nodes to sleep more
- Traffic engineering for energy saving
 ⇒ Routing to allow major portions of network to sleep
- □ Energy efficient discovery of sleeping devices
- □ Energy efficient P2P, Webcams, and Sensors
- □ Data caching for energy saving
 - \Rightarrow Reduce traffic on the network

Ref: Ken Chriestensen, Keynote, LCN 2009

Delay/Disruption Tolerant Net (DTN)

- □ Intermittent Connectivity.
- Scheduled disconnections (Daily power cuts)
- Long or variable delay
- □ Asymmetric data rates
- High Error Rates

Top 10 Features of Next Generation Internet

- 1. Security
- 2. Mobility
- 3. Disruption Tolerant
- 4. Green: Proxy, Sleep Modes,
- 5. Services: Storage, Translation, Monitoring
- 6. User/Data-Centric: Network support of data objects
- 7. Easy to use: Self-organizing, better user control
- 8. Organizational Representation
- 9. Virtualizable to create Application Specific Context10. Policy Enforcement

- 1. Internet is a green-enabler.
- 2. Current networking protocols are energy-unaware. Networking/Networked equipment can't sleep.
- 3. Green architecture will save energy not only in networking but even more in networked equipment.
- 4. IEEE, IETF, ITU, ECMA, and numerous industry groups working on green networking
- 5. Green networking is an important aspect of Future Internet.

References							
References on Green Networking, <u>http://www.cse.wustl.edu/~jain/refs/gnet_ref.htm</u>							
Washington University in St. LouisHttp://www.cse.wustl.edu/~jain/talks/adcom09.htm©2009	Raj Jain						
34							