Wireless Access Networks: Recent Developments, Issues and Trends

Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 USA

Jain@cse.wustl.edu

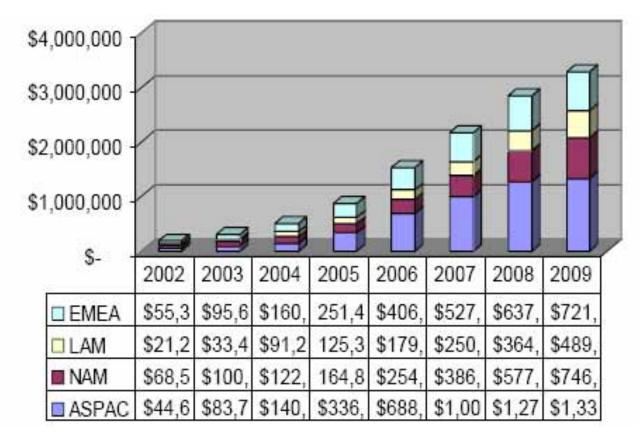
Keynote at AccessNets 2007, Ottawa, Ontario, August 24, 2007

Audio/video recordings of the presentation are available on-line at Washington <u>http://www.cse.wustl.edu/~jain/talks/accnet.htm</u>

AccessNets 2007

©2007 Raj Jain

- 1. Trends
- 2. WiMAX
- 3. Recent developments in wireless PHY
- 4. Competition
- 5. Upcoming Technologies

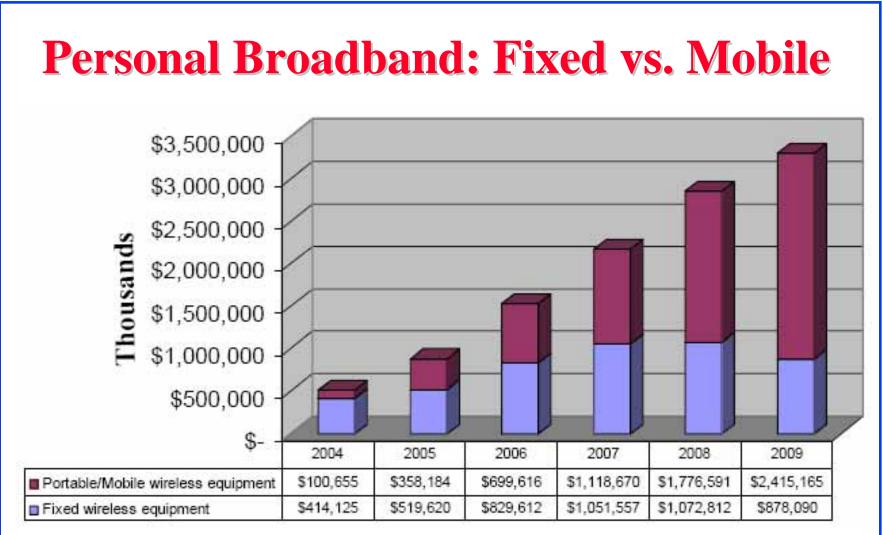

Telecom Revenue

	Revenue in Billions						
	2003	2004	2005	2006	2007	2008	Annual
							Growth
Video	0.2	0.3	.05	1.0	1.6	2.5	65.7%
Consumer Broadband	2.8	3.5	4.0	4.2	4.6	4.8	11.4%
Consumer long distance	20.7	18.2	16.0	13.6	11.3	9.2	-15.0%
Business local	26.3	26.7	26.4	26.1	25.8	25.5	-0.6%
Business long distance	26.1	24.5	23.0	21.3	19.7	18.2	-7.0%
Business data	44.8	45.6	46.6	47.1	46.8	45.4	0.3%
Consumer local	46.9	42.2	39.0	36.2	34.0	32.3	-7.25%
Wireless	91.5	108.7	119.2	132.8	144.5	153.6	10.9%
Total	260.7	271.5	277.0	285.0	291.3	294.9	2.5%

Source: Instat/MDR (Business Week, Feb 28, 2005)

- Long distance is disappearing.
- 48% of global Telco revenues coming from wireless
- 26% of wireless revenues coming from data (vs. voice) Third broadband pipe (along with Cable modem, DSL) Washington University in St Louis

Broadband Market by Regions

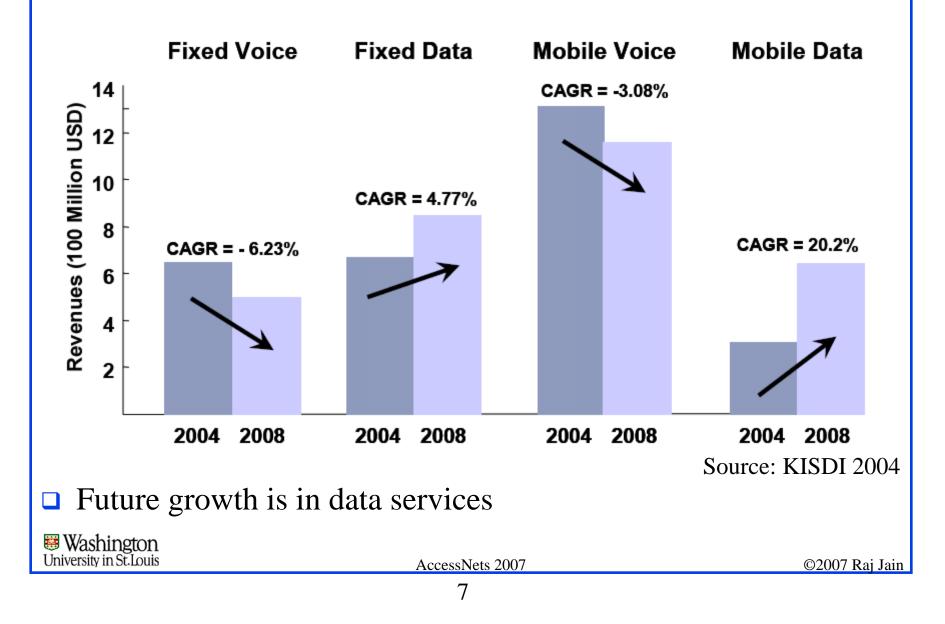

□ ASPAC and EMEA leading the growth

Source: Skylight Research

Washington University in St.Louis

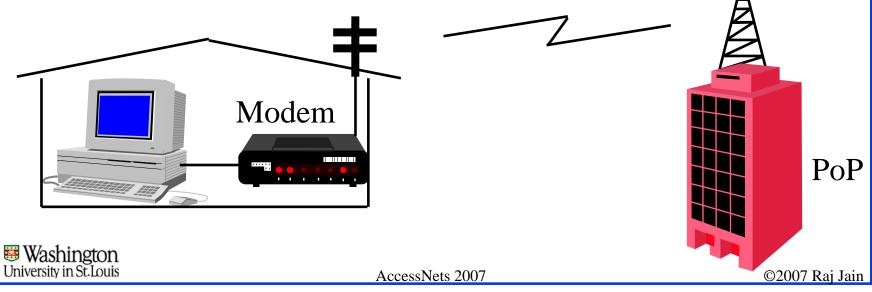
AccessNets 2007

©2007 Raj Jain



Source: Skylight Research

□ Mobile broadband is growing


Washington University in St.Louis

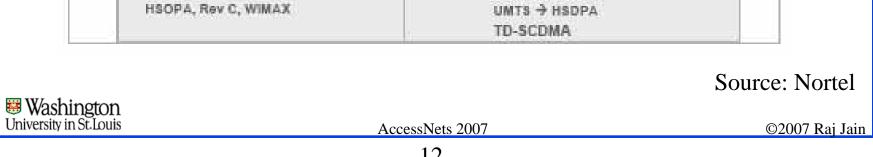
Voice and Data Revenues (Korea)

Prior Attempts: LMDS & MMDS

- □ Local Multipoint Distribution Service (1998)
- □ 1.3 GHz around 28 GHz band (Ka Band)
 28 GHz ⇒ Rain effects
- □ Multi-channel Multipoint Distribution Services (1999-2001)
- □ 2.1, 2.5-2.7 GHz Band ⇒ Not affected by rain
 Issues: Equipment too expensive, Roof top LoS antennas, short range (LMDS) or too small capacity (MMDS)

WiMAX

- □ WiMAX \neq IEEE 802.16
- □ Worldwide Interoperability for Microwave Access
- 420+ members including Semiconductor companies, equipment vendors, integrators, service providers. Like Wi-Fi Alliance
- □ Narrows down the list of options in IEEE 802.16
- □ Plugfests started November 2005
- WiMAX forum lists certified base stations and subscriber stations from many vendors
- □ <u>http://www.wimaxforum.org</u>

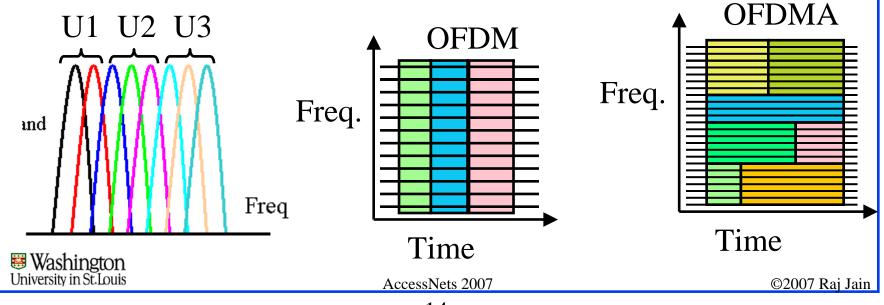


Six WiMAX Foundation Technologies

- 1. OFDM, OFDMA, Scalable OFDMA (SOFDMA)
- 2. Beamforming
- 3. MIMO
- 4. Space Time Block Codes (STBC)
- 5. Turbo Codes
- 6. Time Division Duplexing (TDD)
- Note: All of these have also become the foundations of all competing wireless broadband access

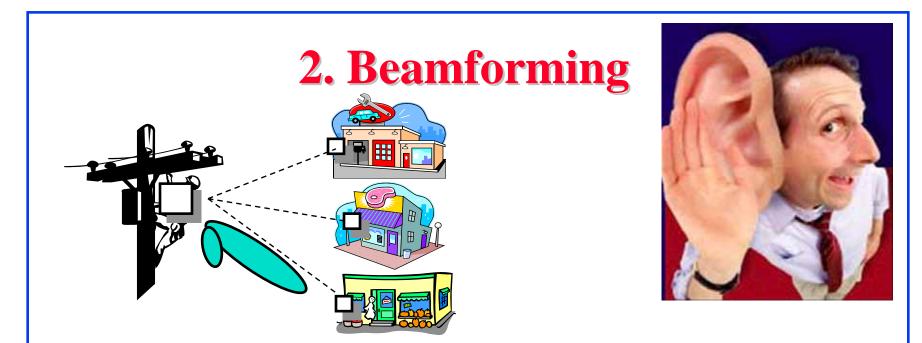
Multiple Access Methods FDMA TDMA Frequency Frequency Time. Time TDMA, PDC 1**G** 2G AMPS, TACS, NMT GSM → GPRS/EDGE **3G 4**G OFDMA CDMA Frequency Frequency

Time

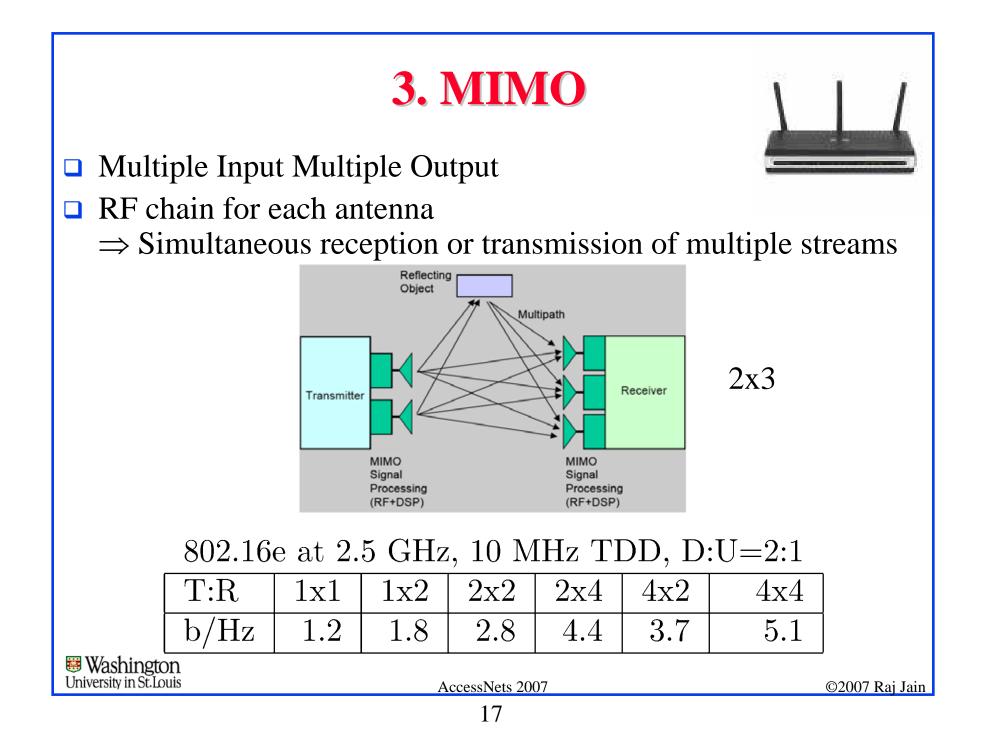

Time

CDMA - EVXDO

1. OFDM Orthogonal Frequency Division Multiplexing Ten 100 kHz channels are better than one 1 MHz Channel \Rightarrow Multi-carrier modulation Frequency band is divided into 256 or more sub-bands. Orthogonal \Rightarrow Peak of one at null of others □ Each carrier is modulated with a BPSK, QPSK, 16-QAM, 64-QAM etc depending on the noise (Frequency selective fading) Used in 802.11a/g, 802.16, Digital Video Broadcast handheld (DVB-H) ind Easy to implement using FFT/IFFT Freq Washington University in St. Loui AccessNets 2007 ©2007 Raj Jain

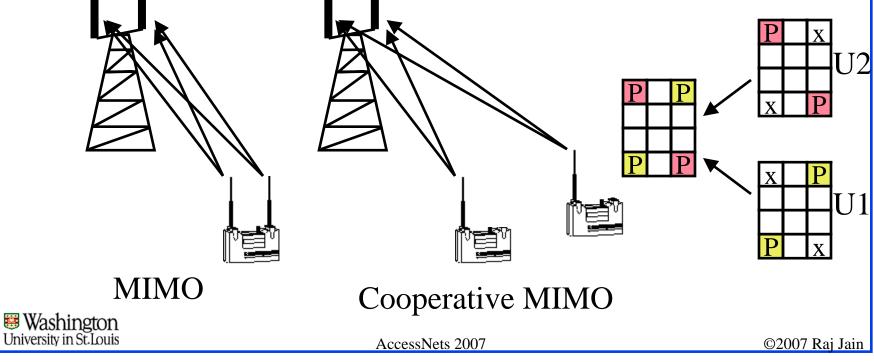

OFDMA

- □ Orthogonal Frequency Division <u>Multiple Access</u>
- □ Each user has a subset of subcarriers for a few slots
- □ OFDM systems use TDMA
- □ OFDMA allows Time+Freq DMA \Rightarrow 2D Scheduling

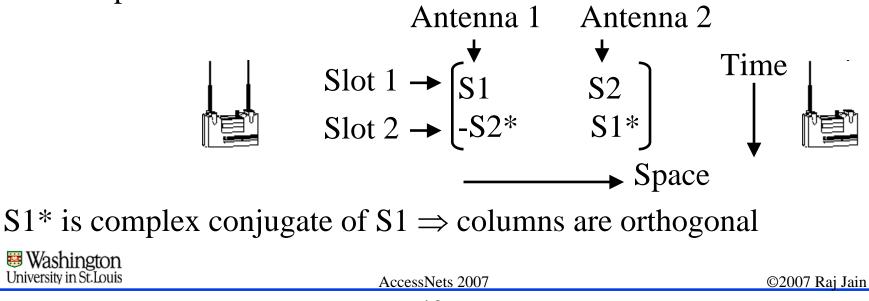


Scalable OFDMA (SOFDMA)

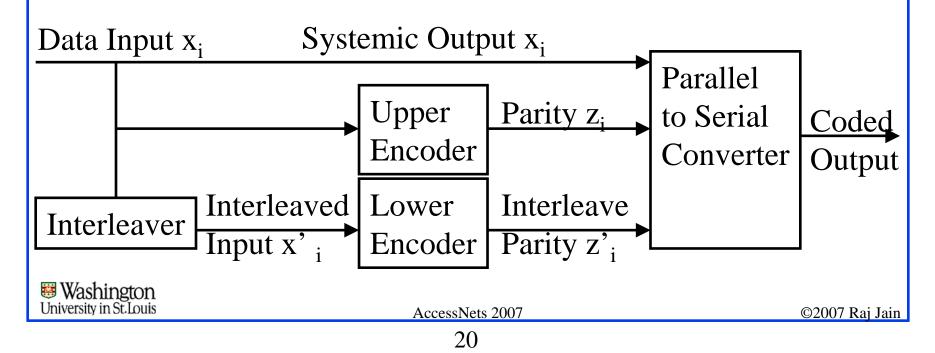
- □ OFDM symbol duration = f(subcarrier spacing)
- Subcarrier spacing = Frequency bandwidth/Number of subcarriers
- Frequency bandwidth=1.25 MHz, 3.5 MHz, 5 MHz, 10 MHz, 20 MHz, etc.
- Symbol duration affects higher layer operation
 - \Rightarrow Keep symbol duration constant at 102.9 us
 - \Rightarrow Keep subcarrier spacing 10.94 kHz
 - \Rightarrow Number of subcarriers \propto Frequency bandwidth This is known as scalable OFDMA

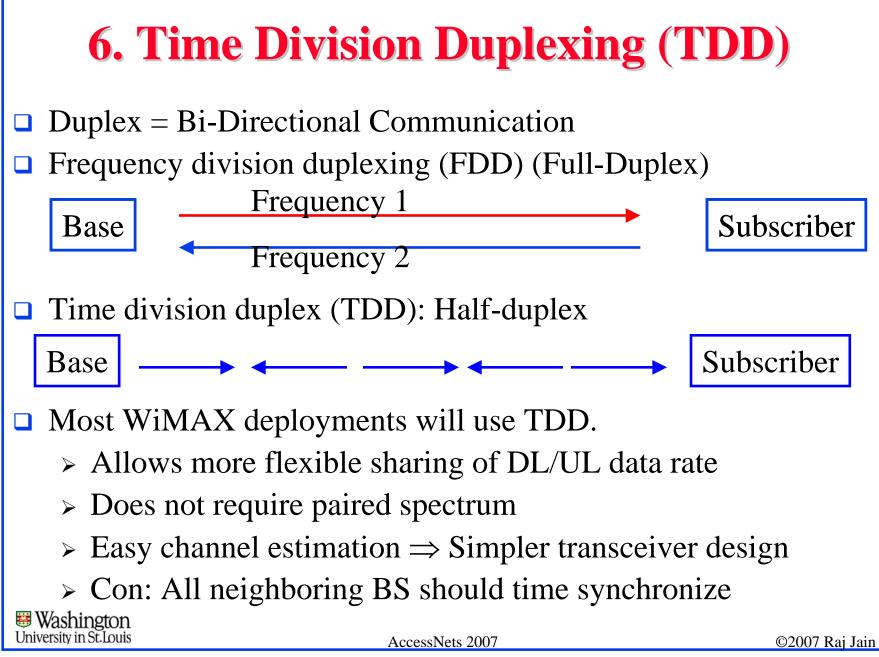


- Phased Antenna Arrays: Receive the same signal using multiple antennas
- By phase-shifting various received signals and then summing ⇒ Focus on a narrow directional beam
- □ Digital Signal Processing (DSP) is used for signal processing ⇒ Self-aligning


Cooperative MIMO

- Two subscribers with one antenna each can transmit at the same frequency at the same time
- □ The users do not really need to know each other. They just use the pilots as indicated by the base.


4. Space Time Block Codes (STBC)


- □ Invented 1998 by Vahid Tarokh.
- Transmit multiple redundant copies from multiple antennas
- □ Precisely coordinate distribution of symbols in space and time.
- Receiver combines multiple copies of the received signals optimally to overcome multipath.
- □ Example: Two antennas:

5. Turbo Codes

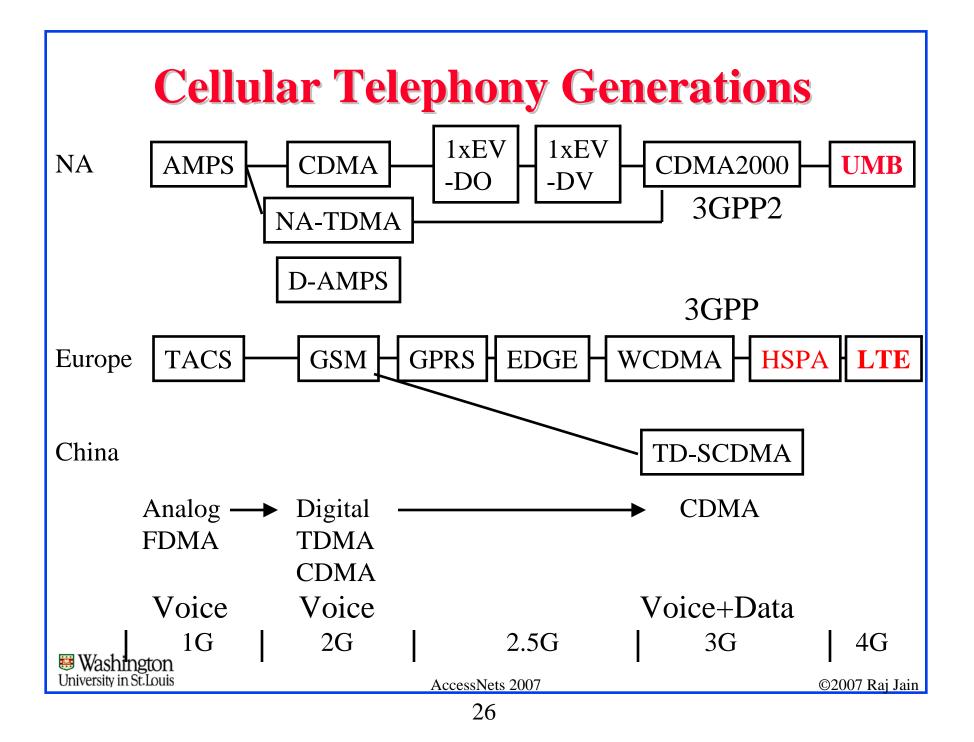
- □ Normal FEC codes: 3dB below the Shannon limit
- Turbo Codes: 0.5dB below Shannon limit Developed by French coding theorists in 1993
- □ Use two coders with an interleaver
- □ Interleaver rearranges bits in a prescribed but irregular manner

Status of WiMAX

- □ WiBro service started in Korea in June 2006
- □ More than 200 operators have announced plans for WiMAX
 - > About half are trialing or have launched pre-WiMAX
 - > Two dozen networks in trial or deployed in APAC
 - > 15 in Western Europe
- □ Sprint-Nextel in 2.3/2.5 GHz
 - > Equipment by Intel, Motorola, Samsung, Nokia, and LG
 - > \$3B for radio network over 3 yrs to cover 200M population
 - > Initial deployment in Washington DC and Chicago
- Intel will sample a multi-band WiMAX/WiFi chipset in late 2007

□ M-Taiwan

Sample WiMAX Subscriber Stations



Other Broadband Access Technologies

□ IEEE 802.11

- High Speed Downlink Packet Access (HSDPA), High Speed uplink packet access (HSUPA), High speed packet access (HSPA)
- □ Evolution data optimized (EV-DO)
- □ Long Term Evolution (3GPP)
- Ultra Mobile Broadband (3GPP2)
- IEEE 802.20 (Mobile Broadband), IEEE 802.22 (Regional Area Networks)

IMT-Advanced

- International Mobile Telecommunications Advanced or 4G
- Wireless broadband access to be standardized around 2010 and deployed around 2015
- I Gbps for nomadic/fixed and 100 Mbps for high mobility (150 km/h)
- □ Requirements will be set in 2008
- □ Set of 4G technologies will be selected by 2010

Ref: ITU-R M.1645, "Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000" (2003)

IEEE 802.16m

Peak data rate:

Downlink (BS->MS) > 6.5 bps/Hz, Uplink (MS->BS) > 2.8 bps/Hz After PHY overhead

> 20 MHz => 130 Mbps

- Mobility: Optimized for 0-15 km/h, marginal degradation 15-120 km/h, maintain connection 120-350 km/h
- □ 3 dB improvement in link budget over 16e
- Optimized for cell sizes of up to 5km. Graceful degradation in spectral efficiency for 5-30km. Functional for 30-100 km.

Ref: Draft IEEE 802.16m requirements, June 8, 2007,

http://ieee802.org/16/tgm/docs/80216m-07_002r2.pdf

700 MHz

- □ February 19, 2009: TV vacates 700-MHz
- □ FCC just approved 700 MHz for broadband access
- □ 108 MHz total available
 - > 60 MHz available by Auction in January 16, 2008
 - > 24 MHz for Public Safety
 - > 24 MHz already owned by Access Spectrum, Aloa Partners, Pegasus Comm, Qualcomm, Verizon, DirecTV, Echostar, Google, Intel, Skype, and Yahoo!
- Open Access: Open applications, Open devices, Open services, and open networks
- □ White spaces: Unused spectrum between 54 and 698 MHz. (Channel 2 through 51)

- Wireless is the major source of carrier revenue
 ⇒ Significant growth in mobile data applications
- 2. CDMA is past. **OFDMA** is taking over.
- 3. WiMAX allows indoor, non-line of sight operation using TDD, OFDMA, MIMO, centralized scheduling, QoS
- 4. IMT-Advanced race is on:
 - Next generation of 3G LTE and UMB are evolving. Taking the best of WiMAX: OFDMA, MIMO
 - □ Next generation WiMAX 802.16m will run at 100+ Mbps

5. 700 MHz will significantly increase the reach and capacity Washington

Spectrum Options							
Designation Frequency		Bandwidth	Notes				
	m GHz	MHz					
3.5 GHz	3.4-3.6; 3.3-	200 Total. $2 \times (5)$	In 77 Countries. Not in				
	3.4; 3.6-3.8	to 56)	US. Considering 3.65-				
			3.70 for unlicensed				
2.5 GHz	2.495-2.690	194 Total.	In USA.				
		16.5+6 paired.					
2.3 GHz	2.305 - 2.320;	2×5 paired. 2×5	US, Kr, Au, Nz				
	2.345 - 2.360	unpaired.					
2.4 GHz	2.405-2.4835	80 Total	Lic exempt. World-				
			wide.				
5 GHz	5.250-5.350;	200 MHz	Worldwide.				
	5.725 - 5.825						
700 MHz	0.698-0.746;	30+48	US				
	0.747 - 0.792						
Adv W.	1.710-1.755;	2×45 paired	Used for 3G				
Serv.	2.110 - 2.155						
University in St. Louis AccessNets 2007 ©							