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Abstract

In performance analysis and design of communication netword modeling

data tra�c is important. With introduction of new applications, the charac-
teristics of the data tra�c changes. We present a brief review the di�erent
models of data tra�c and how they have evolved. We present results of data

tra�c analysis and simulated tra�c, which demonstrates that the packet
train model �ts the tra�c at source destination level and long-memory (self-

similar) model �ts the tra�c at the aggregate level.



1 Introduction

Characteristics of data tra�c play crucial role in performance analysis and

design of communication networks. Understanding the models of computer

network tra�c will help us design better protocols, design better network

topologies, design better routing and switching hardware and provide better

services to the users.

We believe that:

� a sudden exponential up turn in the last several years of number of

hosts interconnected in networks (e.g. in Internet since 1988 [JAI95])
and intensi�ed usage of network application, which in turn increased
amount of tra�c in network several order of magnitude,

and

� introduction and intensive usage of new network applications, which

have appeared recently, such as WWW, Gopher and newsgroups (quite
di�erent from traditional network applications),

have completely changed nature and characteristics of network tra�c, from

those tra�c had been exercised until mid 1980's.
Just as a complement to the previous statement and as justi�cation of

necessity for correct understanding of tra�c characteristics, we provide a
citation from [PAR93]: \... we still do not understand how data communica-
tions tra�c behaves. After nearly a quarter century of data communications,

researchers are still struggling to develop accurate tra�c models. Yet daily
we must make decisions about how to con�gure networks and build network-
ing devices based on our inadequate models of data tra�c. There's a serious

need for more research work on non-Poisson queuing models."

In summary, exceptional growth in amount of network tra�c and emerg-

ing of new types of tra�c clearly indicate that new studies and research in
the area are needed. The above reasons are the motivation for this research.

In our research, we performed collection of data tra�c from an academic

computer network, then we concentrate on tra�c analysis and modeling,

primarily for purpose of discovering inuence of tra�c characteristics on

network design parameters.
This report is organized as follows. Section 2, provides overview of dif-

ferent data tra�c models, starting with Poisson (classical) model, which is
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followed two more recent models: packet train model and long-memory (self-

similar) model. In Section 3, we give description of our tests and analysis

(using long-memory and packet train models) of data tra�c we obtained from

CIS (Computer and Information Sciences Department) network. At the end

we provide an extensive bibliography.

2 Overview of Tra�c Modeling

In this Section we give a brief overview three tra�c models.

Stochastic models of packet tra�c used in past were almost exclusively
Markovian in nature, or more generally short-range dependent tra�c pro-
cesses. Those tra�c models, now called classic models, assumed Poisson ar-

rival rate and exponential length of messages. Data source models with those
characteristics were used in the analysis and modeling of early ARPANET

and agreement between real data and results from queuing models were good
and satisfactory. And so were agreements in 10-15 years that followed.

It is worth noting that traditional telephony has bene�ced very much (for

understanding its internal behavior and for a system design) for a long time
(more than a half century) from classic tra�c models, which basically as-
sume that call holding times are exponentially distributed. But, some recent

studies [DUF94] have shown that call holding times may be best described
using heavy-tailed distributions with possibly in�nite variance/mean. These

characteristics are contrary to those of exponential distribution. The very
possible reason for the change in characteristics of telephone tra�c is that
telephony systems are now being used not only for its traditional voice com-

munication but more and more for computer communication (e.g. remote

access), telex tra�c and other new telematic services. Apparently those new

tra�cs have quite di�erent characteristics than voice communication and as

their share of overall tra�c has grown, so overall tra�c characteristics have
changed from classical ones.

Similarly, in mid 80's, it became apparent that traditional tra�c mod-

els for computer networks were less appropriate, because predicted perfor-
mances and real data would not agree, and many practitioners noticed that

discrepancy. Again, probably nothing was wrong (although some are trying
to establish exactly that) with early queuing models of computer network

tra�c and they were appropriate for their times, but nature of the tra�c has

changed since, as result of di�erent usage of computer networks.
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Many studies indicate considerable increase in overall amount of tra�c

in the network. For example, [STI95] mentions the Internet's 20 percent

average monthly increases on its most heavily used segment. That by itself

may qualitatively change the nature of the tra�c. But, noticeable are also

types of tra�c generated by new network applications such as World Wide

Web, Gopher and newsgroups, which are quite di�erent from traditional

application such as �le transfer protocol (FTP), remote access (telnet) and

E-mail (smtp). These new types of tra�c can obviously change overall tra�c

characteristics in computer networks.

As result of those observations and trends, since mid 1980's, research in

the area of tra�c characterization and its implications on design of computer
networks has intensi�ed [JAI86, JAI90, LEL91, FOW91, GAG94a, LEL94a,

KLI94a, ADA95, PAX94a, PAX94b]. The concept of \packet trains" was
introduced in 1986 [JAI86] and become very popular. This model assumes
that a group of packets travel together as a train, contrary to the Poisson

model which assumes that packets are independent, so it can be seen as \car
model".

One of features of today's networking tra�c discovered 3-4 years ago is

its long-range dependency (long-memory) [COX84], found in both local area
networks [LEL94a] and wide-area networks [KLI94a]. In addition, tra�c

in local area network is self-similar (fractal) [LEL94a], characteristics usual
not found in wide-area tra�c [KLI94b], which appears to be asymptotically
self-similar in only few recorded traces.

Now we provide some details of each of mentioned tra�c models.

2.1 Poisson (Classical) Model

First studies on data tra�c [JAC69, FUC70] indicated that the data tra�c

sources in communication networks were often bursty in nature, i.e. relatively

short sequence of source activities are followed by long idle periods. During
70's and early 80's, those and some other studies suggested the following

assumptions as reasonable, if somewhat simpli�ed, for external data sources:

1. The interarrival times of messages generated by an external data source

are exponentially distributed, i.e., each external data source behaves

as a Poisson process. Let G(i); i = 1; 2; : : : ; N , be a random variable
denoting interarrival times of messages generated from the ith data

source.
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2. The length of messages generated by an external data source are ex-

ponentially distributed. Let H(i); i = 1; 2; : : : ; N be a random variable

denoting length of messages from the ith data source.

3. Processes described by random variables G(i) and H(i) are stationary

and independent.

As a consequence of the assumption 1, the aggregate tra�c from several

data sources would get smoother and smoother with an increase of a number

of sources.

The assumption 2, about exponential distribution of lengths of messages
can be relaxed to general distribution, and still closed-form solutions for

di�erent statistical parameters (mean, variance and other moments of a dis-
tribution) could be obtained using queuing theory methods.

Assumption 3, above is not realistic, because at least interarrival times

and message lengths for message streams entering a communication switch
(node) are clearly statistically dependent. For example, if we consider two

successive messages arriving into a switch, the second message cannot get
into the switch before the �rst message has arrived completely.

Kleinrock [KLE64] observed that problem in the exact mathematical anal-

ysis of store-and-forward communication networks and resolved it by intro-
ducing the independence assumption. That assumption basically states that

each time message is received at a switch a new length is chosen for this
message from an exponential distribution. It implies that as the message
length is changing from node to node, the service time (transmission time

at each link) is not identical for the same message as it passes through the
network. Clearly this assumption does not correspond to the actual situa-
tion, but its mathematical consequences (applicability of the Jackson's theo-

rem [JAC63]) resulted in models which accurately described the behavior of

store-and-forward communication networks.

2.2 Packet Train Model

The packet train model assume that a group of packets travel together, and it
should be obvious that a protocol design based on the assumption of a train

arrival would be quite di�erent from one based on independent arrivals. In
the car model, each car has to decide at each intersection (or exit) whether

to take exit or not. Even if all packets are going to one destination, they each
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make independent decision, which may result in unnecessary overhead. The

overhead is apparent on computer networks in which all intermediate nodes

(routers, gateways, or bridges) must make this decision for all packets. In a

train model, on the other hand, the locomotive (the �rst packet of the train)

may make the routing decision, and all other packets of a train may follow

it.

It must be pointed out that the packet train model is a source model. It

applies only when we look at the packets coming or going to a single node.

Unlike the Poisson processes, trains are not additive. The sum of a number

of trains is not a train.

In order to allow analytical modeling with a simpli�ed form of train
model, usage of a two-state Markov model is suggested. The source can

be either in generation (train) state or idle (inter-train) state. The transi-
tions between these states are memoryless (Markovian). The duration of the
two states is exponentially distributed, with intertrain arrival times usually

of the order of several seconds and intercar times inside the trains of the
order of a few milliseconds.

2.3 Long-Memory (Self-Similar) Model

Some recent studies show that packet tra�c in modern networks is strongly
auto-correlated and there exists a long-range dependency, i.e. a persistence
in their correlation structures does not die even for large lags.

2.3.1 Theoretical Background

For a stochastic process X = (Xt : t = 0; 1; 2; : : :) to be a second order

(weak or covariance or wide-sense) stationary, it is su�cient to have the

existence of a stationary mean � = E[Xt], a stationary and �nite variance
v = E[(Xt � �)2], and a stationary auto-covariance (function) associated
with a process of observations made at successive times k = cov(Xt; Xt+k) =

E[(Xt � �)(Xt+k � �)]; k = 0; 1; 2 : : :, that depends only on k and not on t.
Let X = (Xt : t = 0; 1; 2; : : :) be a second order stationary stochas-

tic process, with a mean � = E[Xt], a variance v = E[(Xt � �)2], and

auto-covariance (function) k = cov(Xt; Xt+k) = E[(Xt � �)(Xt+k � �)]; k =
0; 1; 2; : : :; Note, v = 0. Let the auto-correlation (function) of X at lag k be

denoted as �k, and by de�nition �k = k=0.
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We can think of a packet tra�c process X consisting of a set fXtg, where

Xt is the number of packets that arrive in the t-th time unit.

(Note: We consider only stationary processes, so anywhere in this text

when we use the term \auto-covariance (function)", we could use the term

\auto-correlation (function) instead".)

Let let X(m) = (X
(m)

j : j = 1; 2; 3; : : :) for each m = 1; 2; 3; : : :, be the new

second order stationary process, obtained by averaging the original process

X over non-overlapping blocks of size m, i.e. X
(m)

j = (Xjm�m+1+Xjm�m+2+

: : :+Xjm)=m, with the variance vm, the auto-covariance 
(m)

k and the auto-

correlation �
(m)

k . It can be shown that:

vm = v=m+ 2=m2

mX

k=1

(m� k)k (1)

or

vm = v=m+ 2=m2

m�1X

s=1

sX

k=1

k (2)

The stochastic process X is said to have short-range dependency if
P

k k
is convergent, (i.e.

P
k k <1). Equivalently, from equation (2)

vm � v0=m with v0 �nite, for large m (3)

(`�' means that expressions on the two sides are asymptotically proportional
to each other)

Such process is also called a stationary process with short memory or

short-range correlations or weak dependence. An example of a stationary

short-range dependent process would be a stochastic process with exponen-

tially decaying auto-covariance function, i.e.

k � r0ak for large k; 0 < a < 1

(Note: At least in theory, other forms are possible as long as
P

k k <1)

Assuming 3 holds, it can be shown that 
(m)

k ! 0, for k = 1; 2; : : :, for

large m. Then, it can be concluded that the aggregated (averaged) processes
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X(m), derived from the short-range dependent process X, for large m tend

to covariance (second order) stationary white (pure) noise.

A stochastic process X is said to have long range dependency if
P

k k is

divergent, i.e.
P

k k !1. Equivalently, from 1

mvm !1; for large m

Such process is also called a stationary process with long memory or long-

range correlations or strong dependence. An example of a stationary long-

range dependent process would be a stochastic process with hyperbolically

decaying auto-covariance function, i.e.

k � r0k�� for large k; 0 < � < 1

or equivalently

vm � v0m�� for large m; 0 < � < 1

Relationship between r0 and v0 can be found from equation 1.

(Note: At least in theory, other forms are possible as long as
P

k k !1)
From an intuitive point, possibly the most enlightening property is that the
averaged process X(m) takes a nondegenerated correlation structure for large

m. An implication is that the averaged process X(m) will not appear as white
noise. Instead, the (typical) aggregated tra�c will have bursty subperiods

and less bursty subperiods for small as well large time-scales.
It can be shown that for long-range dependent processes

�
(m)

k ! �k for large k and m (4)

Equation 4 indicates that for k and m large enough, auto-correlation does not

depend on m, but only on k. This property is called asymptotic second-order

self-similarity. So, long-range dependency implies asymptotic second-order

self-similarity.

The process X is said to be exactly second-order self-similar (or fractal)
if

�
(m)

k = �k for all m; k >= 0
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and

vm = vm�� for all m; k >= 0

Above implies that the process X and the averaged processes X(m) have

identical correlational structure and \look" alike.

Usually, instead of the parameter �, the parameter H = 1� �=2 is used

and it is called Hurst coe�cient. H (Hurst) coe�cient characterizes the

stochastic processed as follows:

1. for 1=2 < H < 1, the process has long-range dependence,

2. forH <= 1=2, this is the case of a process with short-range dependence
or independence.

2.3.2 Estimation of H Coe�cient

There are several methods which can be used to estimate H coe�cient [BER94],
including:

� R/S statistics,

� log-log correlogram,

� log-log plot of vm versus m,

� semivariogram,

� least squares regression in the spectral domain.

All of them are heuristic approaches, each with certain problems.In our
analysis for long-memory we used approach with log-log plot of vm versus m.

For large values of m, the points in the log-log plot of vm versus m are ex-

pected to be scattered around a straight line with negative slope �(= 2H�1).

In the case of a process is with short-range dependence or independence we

would have � = �1 (H = 1=2). For a process with long-range depen-
dence the slope is less steeper but still negative, i.e. �1 < � < 0, implying
1=2 < H < 1. The case that the points in a graph are scattered around a

straight line with �1 < � < 0 for all values of m would imply self-similar

property. It should be noted that slight departures from H = 1=2 are not

usually easy to distinguish from the case H = 1=2. Similar problems appears
with other methods.
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2.3.3 Experimental Queuing Analysis

Unexpected degree of cell loss in the �rst ATM switches has been reported,

e.g. [CSE94]. It is believed that bu�er requirements was underestimated in

design of those ATM switches, as consequence of modeling under traditional

(Poisson) assumptions. And it is exactly that point: the implications of a

long-memory tra�c are quite di�erent from ones of a Poisson tra�c.

The study in [ERR94a, ERR94b, ERR94c] illustrates very nicely that:

1. a real Ethernet tra�c they collected in an research and development

network has quite di�erent characteristics from a tra�c generated by

Markovian processes,

2. long-range dependency is an important characteristics of that real traf-

�c,

and in this Section we shall describe their �ndings.
They considered the queuing system with the following characteristics:

� in�nite waiting room,

� deterministic service times,

� single server and

� arrivals taken (in di�erent ways) from actual Ethernet tra�c traces.

Di�erent transformations of original tra�c trace are made, in order to

preserve the marginal interarrival time distribution throughout the di�erent
queuing experiments. Service time is changed to obtain di�erent value pairs

for utilization and the average waiting times for a given input trace.

In the average delay vs. utilization plot, they �rst considered the following
curves (see the graph 1):

� the curve A is obtained with original tra�c traces;

� the curve C is obtained with an input trace that is obtained by shu�ing
the time series of interarrival times of original tra�c trace. By random-

izing the set of interarrival times, we preserve the marginal distribution
of interarrival times, while destroying all correlations between them;
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Figure 1: Average delay of transformations

� the curve B is obtained using GI/G/1 approximations based on two
moment characterizations of original tra�c, that are widely applied in

practice.

It is noticeable that there is signi�cant disparity between curves A and

C. The curve A has a sharp rise in the average delay around 50%, while the
knee of the curve C is around 90%. The implication is that the curve C is

predicting much better performances than they are with real tra�c.
It is interesting to note the relationship between the curve B and curve

C. The curve B predicts little more conservative performance than curve C,

with the knee at little over 85%. It would be an excellent result and a design
guideline, if curve C was an indication of real performance. But, the curve

C would indicate real performance, only if the original tra�c traces were

uncorrelated and independent (shu�ing for the curve C destroy any such
characteristics). Once more, stochastic models of packet tra�c used in past

are almost exclusively Markovian in nature, or, more generally short-range
dependent tra�c processes, and it was generally accepted that relationship

between analytical results and real performances is somewhat similar to the

relationship between curve B and curve C.
Several more curves are then introduced:

� the curve D is obtained with an input trace that is obtained using a
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special procedure, from the original time series of interarrival times,

preserving only one-step correlation and destroying all other correla-

tions between them;

� the curve E is obtained with an input trace that is obtained after ex-

ternal shu�e of the original trace with m=25. External shu�e is done

as follows. First, the original sequence of interarrival times is divided

into blocks of size m. With N interarrival times, there are N/m such

blocks. Then, the order of blocks is shu�ed, while preserving the se-

quence inside each block. For choices of m in the range 10-100, the

e�ect is of preserving the short range correlations while eliminating the
long range correlations;

� the curve G is obtained with an input trace that is obtained after

external shu�e with m=500;

� the curve F is obtained with an input trace that is obtained after in-
ternal shu�e with m=25. Internal shu�e is done as follows. First,

the original sequence of interarrival times is divided into blocks of size
m. With N inter-arrival times, there are N/m such blocks. Then, while
preserving the sequence of blocks, a sequence of interarrival times inside

each block is randomized. This has e�ect of destroying the short-range
correlations in data, while preserving the long-range correlations.

The following can be observed from the graph:

1. The curve D (one with preserving only itemstep correlation and de-
stroying all other correlations in the trace) is very close to the curve B
(GI/G/1 approximation), indicating that something else but one-step

correlation is inuencing performance.

2. The curve E (external shu�e with m=25, preserving the short range

correlations while eliminating the long range correlations) is still far
away from the curve A. Similar results are obtained over the range of

m, indicating that such models do not capture signi�cant aspects of
the queuing performance.

3. The curve F (internal shu�e with m=25, destroying the item range

correlations in data, while preserving the itemrange dependency) �ts

almost perfectly the curve A. This indicates the long-range dependency
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is dominant characteristics for queuing performance, implying the same

(dominant) e�ect on many tra�c engineering design issues.

4. The curve G (external shu�e with m=500) is signi�cantly o� the curve

A, indicating that correlations over extremely long time scales have

measurable and practical consequence.

In conclusion, this experiment has shown that dominant characteristics

for queuing performances of Ethernet tra�c is a long range dependency,

while the inuence of a itemrange dependency is relatively small and even

negligible.

3 Initial OSU Results in Data Tra�c Analy-

sis and Modeling

This research team has at its disposal as a testbed, for data collection and

for other necessary types of research experiments, a computer network of
Department of Computer and Information Science (CIS department) at the

Ohio State University. This is one of largest networks of instructional, dis-
tributed, diskless work-stations in the country. Based on Ethernet technol-
ogy, the computer network includes over 650 work-stations (HP715/64, Sun

SLC and Sun ELC), over 100 micros (Apple Macintoshes) and about 60 �le
servers and minis (HP 725/64, HP 9000/755, Sun SPARC 10 and Sun 4/75).

Analysis of Ethernet tra�c characteristics of network environment at the

Bellcore Morris Research and Engineering Center, as a typical research or
software development environment, has been reported in [LEL94a]. We be-

lieve that analysis of current Ethernet tra�c in typical university environ-

ment, as CIS department, may provide di�erent insight into tra�c charac-
teristics of modern computer networks.

We have found exceptionally intensive tra�c in our network during aca-
demic quarters. For example, even on one Ethernet segment we considered

moderately loaded (which includes 6 �le servers, 15 dial in access ports and

20 work-stations) outside the \busy hour" (morning around 9:00am in win-
ter quarter; students and professors start with their intensive work later), it

took less than 40 minutes to collect 1,000,000 packets. On the other hand,
during periods between quarters, when students leave the campus, tra�c in-

tensity is much lower. We expect that those variations in tra�c intensity,

12



with consequent changes in its characteristics, could provide additional inside

in tra�c behavior of university network environment and computer networks

in general.

As data collecting tool we use the tcpdump program, distributed with

Unix operating system. Tcpdump runs as the only active program on a

dedicated data collection computer (currently Sun SPARC 10). We found

that timestamps are accurate to within 15 microsec, which is appropriate

from a statistical point of view. Also, the packet loss is less than 0.05%,

which is again appropriate and should not have any inuence to the results

of statistical analysis. Monitoring computer has high capacity local disk,

so monitoring and collecting of packets can be performed for a long time
without any inuence on the system under investigation.

Although we used some existing statistical software packages for some of
required statistical analysis, in the most of cases we needed to develop new
software.

Now we present results of our tra�c analysis. In our analysis we used
one data set obtained from monitoring real data tra�c (and which includes
1 million of packets) as well as several data sets generated by simulation.

Packet train and long-memory (self-similar) models were used. For long-
memory (self-similar) modeling to estimate H-coe�cient value we used log-

log plot of vm versus m.
In the following discussion we refer to graphs shown at the end of this

paper. Each graph indicate number of basic time intervals (Deltas), aver-

age number of arrivals in each time interval, with variation and standard
deviation, value for H-coe�cient, its con�dence interval and R2 (sum of the
distances of the points from the best �t line).

1. For our 1 million data set, using time unit of 10 msec, H-parameter=0.853,
which is similar to Leland's results, indicating self-similar nature of our
Ethernet tra�c. Also, it appears that the graph indicates asymptotic

self-similarity. This test obviously indicates that there are dependencies

in our data set. (see Graph 1)

2. For data set obtained from Uniform distribution, H-parameter=0.579,
which is quite close to 0.5 (theoretical value for H parameter of uniform

distribution is 0.5), indicating that our statistical programs are correct.
(see Graph 2)

3. For data set obtained from Poisson distribution, H-parameter=0.543,
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which is quite close to 0.5 (theoretical value for H-parameter of Poisson

distribution is 0.5), indicating that our statistical programs are correct.

(see Graph 3)

4. For data set obtained from our original 1 million data set by shuf-

ing (randomizing) it, H-parameter=0.546. By randomizing the set

of interfamily times, we preserve the marginal distribution of interar-

rival times, while destroying all correlations (independencies) between

them. In the case of uncorrelated (independent) data, the value for H-

parameter is close to 0.5 is correct. This test is an additional indication

that our statistical programs are correct. This test does not indicate

what types of dependencies exist in the data set. (see Graph 4)

5. H-parameter=0.629 is found with an input trace that is obtained from

our original 1 million data set after external shu�e of the original trace
with mm = 25. External shu�e is done as follows. First, the original
sequence of interarrival times is divided into blocks of size mm. With

N=1 million interarrival times, there are N=mm such blocks. Then,
the order of blocks is shu�ed, while preserving the sequence inside
each block. The e�ect of this external shu�e is of preserving the short

range correlations while eliminating the long range correlations. Value
for H-parameter (still close to 0.5) indicates that the data set has more

signi�cant long-range dependency component than that of short-range
dependency. (see Graph 5)

6. H-parameter=0.732 is found with an input trace that is obtained from

our original 1 million data set after external shu�e of the original
trace with mm = 100. Conclusion from point 5. above is further

supported with this test, because H-parameter increased its value, in-

dicating that we preserved more of long-range dependencies, but even
beyond mm=100 there is still signi�cant component of long-range de-

pendency (For the original data set H-parameter=0.853). (see Graph
6)

7. For data set obtained from packet train model (with average intertrain

interarrival time=250, exponentially distributed; average number of

cars in train=50, geometrically distributed; average intercar interarrival

time=25, exponentially distributed), H-parameter=0.514. Note that in
this case we model tra�c only between two points (i.e. a railway is used

14



with trains between two stations). H-parameter value is as expected,

i.e. no dependency. (see Graph 7)

8. For data set obtained from packet train model as in point 7. but dif-

ferent parameters (with average intertrain interarrival time = 2500,

exponentially distributed; average number of cars in train = 50, ge-

ometrically distributed; average intercar time=50, exponentially dis-

tributed), H-parameter=0.613. Note in this case values for parameters

are taken to correspond to one pair of commutating nodes from the

original data set. (see Graph 8)

9. Data set is obtained from packet train model, assuming existence of 10

pairs of communicating nodes over the same railway (tra�c parameters
for all 10 pairs were identical to those at point 7). H-parameter=0.919.

(see Graph 9)

Also, interesting insight is provided by the Graphs 9a-9h, which provide

values of H-parameter 2; 3; 4; : : : ; 9 pairs, respectively, of communicat-
ing nodes over the same railway (tra�c parameters for all pairs were

identical to those at point 7). It can be observed that H value increases
with a number of pairs. This is very an important result, which states
that with number of pairs tra�c is becoming more and more long-range

dependent, although tra�c of each individual pair has no dependency.

10. Data set is obtained from packet train model, assuming existence of 10

pairs of communicating nodes over the same railway (tra�c parame-
ters for 10 pairs were identical to those of 10 most active pairs from
the original set, i.e. each pair had di�erent characteristics). With H-

parameter=0.964, we again have long-range dependent tra�c which is
composed of tra�c which have no dependency. (See Graph 10)

From points 9 and 10, we may conclude that we have means to generate

tra�c which has long memory and which is self-similar. Once more,

note that we made this result merging data obtained from packet model.

11. Self-similar model analysis of tra�c between pair of nodes obtained

�ltering of the original data set is given on the Graphs 11a-11j.
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4 Conclusion

The network tra�c characteristics change as new types of applications are

introduced. A tra�c model can be become outdated because of the above

reason. In this report we have presented an overview of three tra�c models.

We have done analysis of monitored and simulated tra�c and shown that

the packet train model and self-similar model for Ethernet tra�c are not

contradictory. At source and destination (between two nodes) the tra�c �ts

the packet train model and the aggregate tra�c �ts the self-similar model.
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Figure 2: Graph 1 & 2
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Figure 6: Graph 9 & 9a
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Figure 7: Graph 9b & 9c
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Figure 8: Graph 9d & 9e
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Figure 9: Graph 9f & 9g
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Figure 10: Graph 9h & 10
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Figure 11: Graph 11a & 11b
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Figure 12: Graph 11c & 11d
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Figure 13: Graph 11e & 11f
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(b) Both Src & Dest 8

Figure 14: Graph 11g & 11h
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(a) Both Src & Dest 8
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 Hurst Parameter−1000000 pkts− S&D10 164.107.050.011−164.107.143.002 

Deltas = 24247 

Mean = 1.479 

Variance = 15.106 

Std Dev = 3.887 

H = 0.843

90%−CI= [0.829,0.857]

R^2 = 94.61%

(b) Both Src & Dest 10

Figure 15: Graph 11i & 11j
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