
SWIM: A Scheduler for Unsolicited Grant Service
(UGS) in IEEE 802.16e Mobile WiMAX Networks ∗

Chakchai So-In, Raj Jain, and Abdel-Karim Al Tamimi

Department of Computer Science & Engineering, Washington University in St. Louis
One Brookings Drive, Box 1045, St. Louis, Missouri 63130 USA

{cs5, jain, aa7}@cse.wustl.edu

Abstract. Most of the IEEE 802.16e Mobile WiMAX scheduling proposals for
real-time traffic using Unsolicited Grant Service (UGS) focus on the throughput
and guaranteed latency. The delay jitter and the effect of burst overhead have
not yet been investigated. This paper introduces a new technique called
Swapping Min-Max (SWIM) for UGS scheduling that not only meets the delay
constraint with optimal throughput, but also minimizes the delay jitter and burst
overhead.

Keywords: Scheduling, Resource Allocation, Mobile WiMAX, IEEE 802.16e,
Unsolicited Grant Service, UGS, QoS, Delay Jitter

1 Introduction

One of the key features of the IEEE 802.16e Mobile WiMAX is its strong quality of
service (QoS). The IEEE 802.16e Mobile WiMAX provides the multiple QoS classes
for voice, video, and data applications [1]. To meet QoS requirements especially for
voice and video transmissions with delay and delay jitter constraints, the key issue is
how to allocate resources among contending users. That is why there are many papers
on designing resource allocation algorithms for the IEEE 802.16e Mobile WiMAX
[2].

The IEEE 802.16e Mobile WiMAX offers five classes of service: Unsolicited
Grant Service (UGS), extended real-time Polling Service (ertPS), real-time Polling
Service (rtPS), non-real-time Polling Service (nrtPS), and Best Effort (BE). UGS is
designed for Constant Bit Rate (CBR) traffic with strict throughput, delay, and delay
jitter constraints. ertPS is a modification of UGS for voice with silence suppression.
rtPS is designed for variable bit rate voice, video, and gaming applications that have
delay constraints. nrtPS is for streaming video and data applications that need
throughput guarantees but do not have delay constraints (the packets can be buffered).

* This work was sponsored in part by a grant from Application Working Group of WiMAX

Forum. “WiMAX,” “Mobile WiMAX,” “Fixed WiMAX,” “WiMAX Forum,” “WiMAX
Certified,” “WiMAX Forum Certified,” the WiMAX Forum logo and the WiMAX Forum
Certified logo are trademarks of the WiMAX Forum.

BE is designed for data applications that do not need any throughput or delay
guarantees.

These five service classes can be divided in two main categories: non-real-time and
real-time. nrtPS and BE are in the first category and UGS, rtPS, and ertPS are in the
second category. For the first category, common schemes can directly apply such as
Weighted Fair Queue (WFQ) and a variation of Round Robin (RR) since there are no
hard constraints on delay and delay jitter [2]. On the other hand, real-time services
have strict constraints on these parameters. This makes scheduling difficult in trying
to meet the delay constraint and tolerate the delay jitter with optimal throughput.

UGS is one of the real-time services. Basically, UGS traffic provides a fixed
periodic bandwidth allocation. Once the connection is setup, there is no need to send
any other requests. UGS is designed and used commonly for Constant Bit Rate (CBR)
real-time traffic such as leased-line digital connections (T1/E1) and Voice over IP
(VoIP). The main QoS parameters are maximum sustained rate, maximum latency,
and tolerated jitter (the maximum delay variation).

As indicated earlier, previous papers on the IEEE 802.16e Mobile WiMAX
scheduling have ignored the effect of burst overhead and often ignored the delay and
delay jitter constraints [2 to 5]. In this paper, we propose an algorithm for UGS
scheduling that includes these features. Although, the discussion in this paper is
limited to UGS service class only, we plan to extend this algorithm for other real-time
services and for a mixture of users from different service classes.

Scheduling Factors

The scheduler for UGS needs to be designed to meet the four main QoS criteria for
the IEEE 802.16e Mobile WiMAX [1, 2]. First, to optimize system throughput, that
is, the scheduler should use all available UGS slots if there is traffic.

Second, the scheduler should guarantee the delay constraints or maximum latency
guarantees. In this paper, we also use the term “deadline” to mean delay constraint
because the allocation is made within the deadline.

Third, the scheduler should minimize delay jitter. The definition of delay jitter is
the variability in inter-packet times from one inter-packet interval to the next.

Finally, the scheduler should minimize number of bursts in order to reduce Media
Access Control (MAC) and MAP overheads that reduce system throughput.

2 Related Work

There has been some research on delay jitter control for real-time communication in
ATM and packet data networks. One way is to introduce a delay jitter regulator or
rate regulator at each hop. The regulator delays a packet in order to keep constant
delay jitter over the end-to-end path [6, 7, 8]. This method minimizes delay jitter
increasing the mean delay and possibly reducing the throughput.

As shown in our extensive survey of the IEEE 802.16e Mobile WiMAX schedulers
[2], channel-unaware IEEE 802.16e schedulers have applied two techniques for UGS
traffic: Weighted Round Robin (WRR), equally spread the allocation over all Mobile

WiMAX frames (we call this averaging or AVG algorithm) and Earliest Deadline
First (EDF) [3, 4, 5]. With the admission control, these techniques can achieve
optimal throughput and meet deadlines; however, the delay jitter is not considered.
This parameter is one of the required QoS parameters for UGS, that is, the tolerated
jitter [1].

In addition, most papers have ignored burst overhead, which directly depends on
how many bursts a Base Station (BS) allocates in a Mobile WiMAX frame [2].
Therefore, the delay jitter and the number of bursts are investigated in this paper. In
this paper, we introduce a new algorithm, called SWIM (Swapping Min-Max). This
algorithm assures deadlines and delay jitter constraints, optimizes the throughput, and
also minimizes the number of bursts. We show that along with zero delay jitter, a
number of bursts with SWIM are comparable with those of EDF.

The paper is organized as follows: UGS allocation algorithm with assumptions of
arrival traffic and parameters is described in Section 3. Then, the performance
evaluation and examples are demonstrated in Section 4. Finally, the conclusions are
discussed.

3 SWIM Algorithm

In this section, general assumptions are described first in subsection 3.1. Our
algorithm can be used for both downlink allocation and uplink allocation. However,
the problem is more difficult in the uplink since a Base Station (BS) has no
information about the actual traffic at Mobile Stations (MSs), i.e., the arrival traffic
process or queue length. The BS only knows about total demand and the period. Then,
in subsection 3.2, SWIM algorithm is introduced. The SWIM algorithm basically can
be divided into three basic steps that achieve optimal throughput while meeting the
deadline, minimal delay jitter (in fact zero delay jitter), and minimal number of bursts.

3.1 Assumptions and Parameter Explanation

Basically for the IEEE 802.16e scheduler, all allocations are integer number of slots.
In this paper, the definition of resource is fixed in terms of the number of slots per
uplink (or downlink) subframe. This is denoted by the variable #slots. The number of
bytes corresponding to a slot depends upon the modulation and coding which can vary
among users. Without any loss of generality, we use a fixed number of bytes per slot
and use bytes as the unit of resource allocation and demand.

For UGS traffic, at connection setup, MSs basically declare the total demand
(denoted by DataSize) and a period. For example, connection_1 asks 540 bytes every
3 frames. In other words, every 15 ms (WiMAX profiles specify a frame size of 5ms
[9]). Due to the periodic nature of UGS traffic, the period is the same as deadline. We
use these terms interchangeably; however, we show in Section 4.4 that if the deadline
is less than the period, the throughput is not optimized.

MSs can dynamically join and leave the networks. For joining, in order for BS to

admit a connection, the BS needs to verify if there are enough resources. Also, the
MS may request to change its service on the fly. Therefore, the scheduler needs to be
aware of the quality assurance of all currently accepted connections.

In other words, there is an admission control mechanism. The BS can only admit a
connection if and only if the sum of the total number of currently used resources per
frame and the new demand divided by the deadline of the connection is less than the
total available slots per frame for UGS.

The allocation algorithm is based on DataSize which is a MAC Service Data Unit
(SDU) size for both deadline and delay jitter calculation. We do not explicitly
consider any headers such as fragmentation and packing headers, MAC header, and
ARQ retransmission overhead. However, the MS has to include these overheads in its
demand at the connection setup time.

Finally, we assume that the MS has data available at the beginning of each period.
In other words, the MS has enough buffer space at least for one period. This allows
the BS to allocate the resources anytime within the deadline.

3.2 Algorithm Description

Our algorithm has two parts. First, an initialization procedure that starts with optimal
throughput and delay. Second, a series of resource swapping steps that leads to
optimization of all goals.

Given n users with ith user demanding di over a period pi, optimal throughput can
be obtained by taking a Least Common Multiple (LCM) of periods pi’s and allocating
resources over this cycle.

To achieve zero delay jitter, the algorithm initializes allocated resources (#slots or
#bytes) for each connection by DataSize/period, i.e., di/pi.

In each frame, the connection with the maximum resource allocation is called max-
res connection and the one with the minimum allocation is called min-res connection.

To minimize the number of bursts, there is a swapping procedure between max-res
and min-res connections that results in eliminating the min-res connection and
thereby, reducing the number of connections served in that frame by one. In effect,
this reduces the number of bursts in that frame by one. This will become more clear in
Section 4, where we provide an example.

The swapping procedure is described as follows: first, the algorithm determines the
min-res connection (say, ith connection) and the max-res connection (say, jth
connection). The two connections swap their resources such that ith connection gives
up its resources in the current frame while gaining an equal amount of resources in a
future frame. Of course, the constraints are that jth connection still needs more
resources in this frame and that ith connection’s deadline will still be met.

The system manager can set a minimum burst size parameter, MinBurstSize. The
swapping procedure ensures that each burst is at least this size. In our examples, we
use a MinBurstSize of 1. However, the procedure can be easily applied for any other
values of this parameter. The main effect of this parameter is that the connections
whose deadline is in the current frame must have MinBurstSize allocation or more. If

their allocation is equal to MinBurstSize, they are excluded from swapping. Leaving
MinBurstSize at a non-zero value ensures that all SDUs are delivered exactly at the
deadline and the delay jitter is zero. Setting MinBurstSize to zero will result in a
reduced number of bursts but non-zero delay jitter. The SWIM algorithm will then
produce results similar to EDF.

The new max-res and min-res connections do the resource swapping. Note that the
total allocated resources per frame do not change by this swapping procedure. Also,
the total resources allocated to a connection over its period do not change.

Preallocation(flows) //1st step
Sorted max to min = Sort (flows)
FOR each max_res in Sorted_max_to_min //2nd step
 Sorted_min_to_max = Sort (flows)
 FOR each min_res in Sorted_min_to_max //3rd step
 Max_Min_Swapping (max_res, min_res);
 END FOR
END FOR

Fig. 1. Steps in SWIM Algorithm

There are a few special cases. First, a max-res connection cannot accept more
resources than it needs and so the min-res connection may not get eliminated. In this
case, the next max-res connection becomes the candidate for swapping for the
remaining resources of the min-res connection.

Second, if there are more than one max-res connections (more than one connection
with the same maximum resources allocated in the frame), we choose the connection
whose resources are higher in the next frame.

Third, if there are more than one max-res connections with the same next frame
resources, we select the connection whose deadline is longer. Of course, we exclude
the connections whose deadline is in the current frame and which have allocation
equal to MinBurstSize.

Fourth, if there are more than one min-res connections, we select the connection
that has earlier deadline. Also, if there are more than one min-res connections with the
same deadline, we choose the connection with lower resources in the next frame.

4 Performance evaluation and examples

In this section, we evaluate the performance of the proposed algorithm with other two
commonly used algorithms: EDF and AVG (allocating DataSize/period, di/pi in each
frame to the ith user). For all three algorithms, the process is cyclic that repeats after
LCM period. We show just one such cycle.

First, we evaluate the performance in terms of throughput, mean delay, mean delay
jitter, and number of bursts for each algorithm. Then, the concept of flow admission is
discussed. Finally, we show an alternative scenario in which the deadline is less than
period. In that case, all resources cannot be allocated to UGS connections optimally.

Some resources are left over and can be used by other service classes.

4.1 Throughput, Mean Delay, Mean Delay Jitter, and Number of Bursts

The throughput, mean delay, mean delay jitter, and number of bursts are investigated
in this section. We start with a simple example (Table 1) of static flows by applying
all three algorithms: AVG, EDF, and SWIM. The performance comparisons are
summarized in Table 6.

Table 1. Example I: Static Flows

 C1 C2 C3 C4 C5
DataSize
(bytes)

540

80

900

120

600

Period
(frame)

3

4

6

6

12

Table 1 shows a simple example of 5 connections (C1 through C5) and their demands
(DataSize) in bytes and period in terms of WiMAX frames. The total allocated UGS
slots are 420 bytes per frame (540/3) + (80/4) + (900/6) + (120/6) + (600/12). With all
three algorithms, within one LCM cycle (12 frames in this example), the throughput is
optimal, that is, (540×4) + (80×3) + (900×2) + (120×2) + (600×1) = 5,040 bytes or it
is equal to 420×12 = 5,040 bytes.

Tables 2 and 3 show the allocations using AVG and EDF algorithms respectively.
In AVG, the resource is allocated equally in every frame, e.g., 180 bytes in every
frame for C1, 20 bytes for C2, and so on.

Table 2. Example I: AVG Allocation

Time C1 C2 C3 C4 C5 Sum
0 180 20 150 20 50 420
1 180 20 150 20 50 420
2 180 20 150 20 50 420
3 180 20 150 20 50 420
4 180 20 150 20 50 420
5 180 20 150 20 50 420

…………………..

In EDF, the resource is allocated to the connection whose deadline is earliest. At the
beginning, C1 has the earliest deadline, that is, 3 frames. In the first frame, the EDF
scheduler allocates the entire available capacity of 420 bytes to C1. In the next frame,
the scheduler allocates the remaining 120 bytes for C1 to meet C1’s throughput
guarantee (540 bytes). Of the left-over 300 bytes, 80 and 220 bytes are allocated for
C3 and C2, respectively, because the deadlines of C3 and C2 are 4 and 6 frames.

Table 3. Example I: EDF Allocation

Time C1 C2 C3 C4 C5 Sum
0 420 420
1 120 80 220 420
2 420 420
3 420 420
4 120 260 40 420
5 80 80 260 420
6 420 420
7 120 300 420
8 420 420
9 420 420
10 80 340 420
11 120 80 100 120 420

In SWIM, we initialize the allocation table with equal allocation. This results in
allocations shown in Table 2 for AVG. The swapping steps of SWIM are shown in
Table 4. In the first frame, the max-res connection is C1 and the min-res connection is
C2. Therefore, C2’s allocation in the frame is given to C1 and taken back in the
second frame. This results in C1 obtaining 180+20=200 and C2 obtaining 20-20=0 in
the first frame. C1 obtains 180-20=160 and C2 obtains 20+20=40 in the second
frame. The resulting allocations are shown in Table 4a. Thus, swapping has reduced
the number of bursts by one (one less burst in the first frame while still meeting all the
throughput and delay guarantees for all sources).

In the next swapping step, C1 and C4 swap their allocations in frame 1 and 2
resulting in allocations shown in Table 4b. Next, C1 and C5 swap their allocations in
frame 1 and 2 resulting in allocations shown in Table 4c. Next C1 and C3 swap in
frames 1 and 2. However, in this case, C1 has only 90 units of allocations in 2nd frame
and so the swap is done in two steps. In the first step, 90 units are swapped between
C1 and C5 in frames 1 and 2. Then, the remaining 50 units are swapped in frames 1
and 3. This results in allocations shown in Table 4d. At this point, the allocation for
the first frame is complete since there is only one burst left in this frame. Continuing
these processes for the 2nd frame and other subsequent frames result in the final
allocations shown in Table 5.

Table 4. Example I: SWIM Initial Steps

(a)
Time C1 C2 C3 C4 C5 Sum

0 200 150 20 50 420
1 160 40 150 20 50 420
2 180 20 150 20 50 420

…………………..

(b)
Time C1 C2 C3 C4 C5 Sum

0 220 150 50 420
1 140 40 150 40 50 420
2 180 20 150 20 50 420

…………………..

(c)
Time C1 C2 C3 C4 C5 Sum

0 270 150 420
1 90 40 150 40 100 420
2 180 20 150 20 50 420

…………………..

 (d)
Time C1 C2 C3 C4 C5 Sum

0 420 420
1 40 240 40 100 420
2 120 20 210 20 50 420

…………………..

Table 5. Example I: Final Allocations of SWIM

Time C1 C2 C3 C4 C5 Sum
0 420 420
1 420 420
2 120 20 280 420
3 360 60 420
4 420 420
5 180 60 60 120 420
6 420 420
7 20 400 420
8 120 300 420
9 420 420
10 420 420
11 120 80 80 120 20 420

The mean delays for both AVG and SWIM are the same. These delays are equals to
the periods: 3, 4, 6, 6, and 12 frames for connection 1 through 5, respectively. For
EDF, the mean delays are {(2+2+2+3)/4}=9/4, {(2+2+4)/3}=8/3, {(5+6)/2}=11/2,
{(6+6)/2}=6, and 11 frames for connections 1 through 5, respectively.

Both AVG and SWIM have zero mean delay jitter, i.e., all SDUs are received on
the period. For EDF, the mean delay jitters are {(0+0+1)/3}=1/3, {(0+2)/2}=1, 1, 0,
and 0 for connections 1 through 5, respectively.

Consider the number of bursts: AVG gives 5 connections × 12 frames or 60 bursts,
24 bursts for SWIM, and 23 bursts for EDF. All four performance metrics are

summarized comparatively in Table 6.

Table 6. Performance Comparisons of UGS scheduling disciplines

 Mean Delay Mean Delay
Jitter

#Bursts Throughput

AVG Period Zero High Optimal
EDF Low Variable Low Optimal
SWIM Period Zero Low Optimal

4.2 Fractional Resource Demands

Since both AVG’s final allocation and SWIM’s initial allocation are obtained by
dividing the resource demand by the period, this can result in fractional allocations.
To show this, we change the resource demands of C1 and C4 in the previous example
to 500 and 200, respectively. With a period of 3, C1 requires (500/3) bytes per frame.
Similarly, C4 needs 200/6 bytes per frame. With fractional allocations, we simply
round the allocations in a frame after the frame has been completely allocated. We
find that two decimal digit representations (1/100th) are generally sufficient to avoid
any truncation errors. Table 7 shows the final SWIM allocations for the example. The
allocation is still feasible and results in 26 bursts.

Table 7. Example II: SWIM with DataSize/Period is prime

Time C1 C2 C3 C4 C5 Sum
0 420 420
1 420 420
2 80 7 33 300 420
3 73 347 420
4 420 420
5 80 40 133 167 420
6 420 420
7 40 380 420
8 80 41 299 420
9 420 420
10 420 420
11 80 80 100 159 1 420

4.3 Dynamic Connections

It is common for flows to join or leave the network. For AVG, a newly admitted flow
does not affect the current flows as long as the sum of the total pre-allocated resources
and the resource demand per frame of the new connection is less than the total
available resources per frame.

The above statement also holds for SWIM and EDF. However, the scheduler needs
to maintain the flow states such as how many resources have already been allocated to

each connection. We illustrate this with an example. Suppose a new connection C6
joins the network at time 15 with a resource demand of 500 bytes over a period of 4
frames. At 15th frame, the total resource demand changes from 420 to 545 bytes per
frame. Table 8 shows the initial allocation process for SWIM. The allocations from
time 0 to 10 are the same as that in Section 4.1, Table 5.

At the end of 14th frame, the allocations for the five connections are 540, 20, 420,
0, and 280 bytes. Also, a connection C2 has an allocation of 60 bytes in 15th frame.
This was a result of previous swapping. In Table 8, this type of pre-allocation (which
has changed from initial value due to swapping) is indicated by enclosing it in
parentheses. The pre-allocations for other connections and other frames at the end of
14th frame are also shown in the table by enclosing the allocations in parentheses.

Table 8. Example III: SWIM Initial Steps

(a)
Time C1 C2 C3 C4 C5 C6 Sum
….. 420
11 120 80 80 120 20 420
12 420 420
13 420 420
14 120 20 280 420
15 180 (60) (180) (0) (0) 125 545
16 180 20 150 (70) (0) 125 545
17 180 20 150 (50) (20) 125 545

………………

(b)
Time C1 C2 C3 C4 C5 C6 Sum

15 305 60 180 0 0 545
16 55 20 150 70 0 250 545
17 180 20 150 50 20 125 545

………………

(c)

Time C1 C2 C3 C4 C5 C6 Sum
15 485 60 0 0 545
16 20 205 70 0 250 545
17 55 20 275 50 20 125 545

………………

To meet their throughput guarantees, in their period containing 15th frame,
connections C1 through C5 need 540, 40, 300, 0, and 0 bytes over and above their
pre-allocations. So, the new initial allocations are made by equally dividing these
remaining values by the remaining period. The final results after C6 joins in 15th
frame are shown in Table 9.

Table 9. Example III: SWIM with a new admitted flow C6

Time C1 C2 C3 C4 C5 C6 Sum
….. 420
11 120 80 80 120 20 420
12 420 420
13 420 420
14 120 20 280 420
15 485 60 0 0 545
16 170 0 375 545
17 55 60 310 120 545
18 420 125 545
19 20 525 545
20 120 425 545
21 539 6 545
22 374 96 75 545
23 1 80 1 120 218 125 545

4.4 Deadline less than the Period

If the deadline is less than the period, the total demand before and after a connection’s
deadline is different and it is possible that some frames may be under-allocated. In
other words, it is not possible to achieve full throughput. The unallocated resource can
easily be used for non-time critical service classes. If we try to achieve full throughput
with UGS traffic only, we may not be able to meet the deadline. This is true for all
three algorithms as shown by the examples below.

Table 10. Example IV: Deadline < Period

 C1 C2 C3 C4 C5
Data Size
(bytes) 540 80 900

120 600

Period
(frame) 3 4 6

6 12

Deadline
(frame) 2 4 4

4 6

In Example IV shown in Table 10, the deadline for connections C1 through C5 has
been set to 2, 4, 4, 4, and 6 frames, respectively. If we allocate equal resources over
all frames before the period (resource demand divided by the period), the allocation
per frame is 420. We have full throughput but are missing the deadlines. If we
allocate equal resources over all frames before the deadline (resource demand divided
by the deadline), we need (540/2) + (80/4) + (900/4) + (120/4) + (600/6) or 645. This
is over the available capacity of 420. Of course, if the admission control ensures that
no new connections will be admitted if the sum of resources per frame (using
resource/deadline) is more than the available capacity, we have a feasible solution and
can meet the deadlines in a straightforward manner.

5 Conclusions

In this paper, we have introduced a new algorithm for UGS scheduler for the IEEE
802.16e Mobile WiMAX networks. The algorithm tries to minimize the number of
bursts and gives zero delay jitter. Compared to AVG, the number of bursts is much
less. Compared to EDF, the delay jitter is zero and the number of bursts is
comparable. Although this technique has been designed for UGS service, we believe a
simple extension with a polling mechanism can be used for ertPS service.

There is a tradeoff between delay jitter and the number of bursts. Thus, further
study is needed to relax the tight delay jitter constraints and reduce the number of
bursts.

In this paper, we assumed “Partial Usage of Subcarrier Utilization” permutation. In
this case, all slots have the same capacity. With other permutations, such as adaptive
modulation and coding (band-AMC) permutation, the slot capacity for each slot is
different. We are working on an extension to handle this case. Finally, we have
assumed the uplink allocation. The same algorithm can be extended for the downlink
allocation with further optimization using extra information such as the actual
arrivals, packet sizes, and head of line delays.

References

1. IEEE P802.16Rev2/D2.: DRAFT Standard for Local and metropolitan area networks: Part
16: Air Interface for Broadband Wireless Access Systems. Dec. 2007, 2094 pp.

2. So-In, C., Jain, R., Al-Tamimi, A.: Scheduling in IEEE 802.16e WiMAX Networks: Key
Issues and a Survey. In: IEEE Journal on Selected Areas in Commun., vol. 27, no. 2, pp.
156—171, Feb. 2009.

3. Cicconetti, C., Lenzini, L., Mingozzi, E., Eklund, C.: Quality of service support in IEEE
802.16 networks. In: IEEE Networks., vol. 20, no. 2, pp. 50--55, Apr. 2006.

4. Wongthavarawat K., Ganz, A.: IEEE 802.16 based last mile broadband wireless military
networks with quality of service support. In: Proc. Military Commun. Conf., 2003, vol. 2,
pp. 779--784.

5. Sayenko, A., Alanen, O., Karhula, J., Hamalainen, T.: Ensuring the QoS Requirements in
802.16 Scheduling. In: Proc Int. Conf. on Modeling Analysis and Simulation of Wireless and
Mobile Systems., 2006, pp. 108--117.

6. Dong, L., Melhem, R., Mosse, D.: Effect of scheduling jitter on end-to-end delay in TDMA
protocols. In: Proc Int. Conf. on Real-Time Computing Systems and Applications., 2000, pp.
223--230.

7. Mansour Y., Patt-Shamir, B.: Jitter control in QoS networks. In: IEEE/ACM Transactions
on Networking, vol. 9, no. 4, pp. 492--502, Aug. 2001.

8. Verma, D.C., Zhang, H., Ferrari, D.: Delay jitter control for real-time communication in a
packet switching network. In: Proc. Commun. for Distributed Application and Systems,
1991, pp. 35--43.

9. WiMAX Forum.: WiMAX System Evaluation Methodology V2.1. Jul. 2008, 230 pp.
Available: http://www.wimaxforum.org/technology/documents

