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A B S T R A C T   

With the rapid advancement in the industrial control technologies and the increased deployment of the industrial 
Internet of Things (IoT) in the buildings sector, this work presents an analysis of the security of the Heating, 
Ventilation, and Air Conditioning (HVAC) system which is a major component of the Building Management 
System (BMS), has become critical. This paper presents a Transient System Simulation Tool (TRNSYS) model of a 
12-zone HVAC system that allows assessing the cybersecurity aspect of HVAC systems. The thermal comfort 
model and the estimated total power usage are used to assess the magnitude of the malicious actions launched 
against the HVAC system. Simulation data are collected and used to develop and validate a semi-supervised, 
data-driven attack detection strategy using Isolation Forest (IF) for the system under study. Three schemes of 
the proposed approach are investigated, which are: using raw data, using Principal Component Analysis (PCA) 
for feature extraction, and using 1D Convolutional Neural Network (CNN)-based encoder for temporal feature 
extraction. The proposed approach is compared with standard machine-learning approaches, and it demonstrates 
a promising capability in attack detection for a range of attack scenarios with high reliability and low compu-
tational cost.   

1. Introduction 

The security of the recently evolving Cyber-Physical Systems (CPSs), 
such as smart cities and critical infrastructures, has gained increased 
attention from the research community in the past few years due to the 
rapid advancement in the industrial control technologies and the 
increased deployment of the industrial Internet of Things (IoT) (Braun, 
Fung, Iqbal, & Shah, 2018; Habibzadeh, Nussbaum, Anjomshoa, Kant-
arci, & Soyata, 2019; Khan, 2018). Smart buildings are integral elements 
of smart cities and their IoT technologies are becoming additional ele-
ments in the complex network of the smart city, starting from the sensors 
collecting data to the associated smart systems such as lighting, power 
system, ventilation system, etc. (Ande, Adebisi, Hammoudeh, & Saleem, 
2020). The industry predicts that the IoT market will grow from an 
installed base of 30.7 Billion devices in 2020 to 75.4 Billion in 2025; 
many of which will be deployed in intelligent buildings (IoT Security 
Foundation, 2020). These sophisticated technologies help establishing 
an urban landscape and provide the functionality of unprecedented 
levels of comfort and convenience. In addition, they improve the 

operation and capabilities of buildings in smart cities. However, they 
subject the smart buildings to risks of intrusions due to the increased 
vulnerabilities and advanced attack vectors. According to Kaspersky 
Lab, which is a multinational cybersecurity and anti-virus provider, 
nearly four in ten intelligent buildings were targeted by attacks in the 
first half of 2019, and it is expected that the impact of cyberattacks on 
the building and construction industry will be significant in the coming 
years (Kaspersky, 2019). 

There have been several works for securing the operation of smart 
cities using solutions considering a group of its interconnected sub- 
systems, i.e. smart buildings, power system, transportation system, 
etc., such as in Rahman et al. (2020) where authors proposed a 
machine-learning (ML)-based distributed intrusion detection system 
(IDS) for the IoT network of resource-constrained devices in smart cities 
using feature extraction/selection ML-based models and neural 
network-based detection models. Qureshi, Rana, Ahmed, and Jeon 
(2020) presented an attack detection framework for low power and lossy 
networks in large scale industrial IoT environments in smart cities 
consisting of a threshold modulation phase in which the detection 
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threshold is set for each attack type followed by the attack detection 
phase. In Jararweh, Otoum, and Ridhawi (2020), the authors presented 
a service delivery solution at the edge of the network using a collabo-
rative technique between distributed edge servers and privacy mediator 
nodes with the support of an intrusion detection system to enhance the 
availability, reliability, and security of smart city applications. Singh, 
Jeong, and Park (2020) proposed a deep learning-based IoT-oriented 
framework for secure smart cities using Blockchain technology to pro-
vide a distributed environment at the communication layer, and 
Software-Defined Networking (SDN) to establish the protocols for 
network data forwarding. 

Research in securing the operation of intelligent buildings is indis-
pensable. That is, they are equipped with building management systems 
(BMSs), which are computer-based control systems used for monitoring 
and control of the building’s equipment, such as air conditioning and 
ventilation, lighting, power systems, etc. Specifically, the Heating, 
Ventilation, and Air Conditioning (HVAC) systems are part of BMSs that 
are dedicated to providing healthy and comfortable indoor environ-
ments for occupants with minimum energy utilization. They are the 
most extensively operated equipment, and they contribute to about 40% 
of the total energy consumption and more than 55% of the electricity 
demand in the buildings (IEA, 2017; UN Environment Programme, 
2020). In 2013, two security researchers discovered an exploitable 
critical vulnerability in the building management system of Google 
Australia Office and found that the BMS can be easily compromised to 
gain access to the operating system and any other control systems (Kim 
Zetter, 2013). At the Security Analyst Summit in 2016, Kaspersky Lab 
revealed that a hacker could break into HVAC systems across a city to 
turn them on and cause a blackout due to a power surge (Kate Kochet-
kova, 2016). There have been a number of security breaches in the 
HVAC system in the past years such as the case of the Target Corporation 
hack in 2014 in which the HVAC system was compromised and used to 
gain access to financial records to steal the credit card information for 
over 40 million of the store’s customers in one of the biggest data 
breaches in history (KrebsonSecurity, 2014). Another incident took 
place in 2016 in Finland in which the operation of the heating systems of 
two residential buildings was disrupted leaving the occupants without 
heating due to a DDoS attack (Lee Mathews, 2016). 

The global energy demand is increasing as well as the pressure on 
managers to reduce the expense incurred in operating buildings due to 
the increased electricity prices (Vishwanath, Chandan, & Saurav, 2019). 
Malfunctioning of an HVAC system would result in a significant rise in 
the building’s energy usage and reduction in its energy efficiency. 
Moreover, it can result in interference in the execution of safety super-
vision schemes, and may impact their effectiveness and correctness by 
resulting in executing unnecessary tasks based on falsified decisions. 
Nevertheless, the productivity, health, and comfort of the buildings’ 
occupants are also other aspects of importance that are influenced by the 
operation of HVAC systems. Even though there have been several works 
for optimizing and managing the operation and energy utilization in 

smart buildings, such as Iqbal et al. (2018), Rodriguez-Trejo et al. 
(2017), Safa, Safa, Allen, Shahi, and Haas (2017), Zhu et al. (2019) and 
Ghofrani, Nazemi, and Jafari (2019), investigating and developing so-
lutions for the cybersecurity of building management systems is essen-
tial (Fisk, 2012). There have been limited research works assessing and 
evaluating the cybersecurity aspect of smart buildings, e.g. D’Innocenzo, 
Smarra, and Domenica (2016), Granzer, Praus, and Kastner (2010), 
Hachem, Chiprianov, Babar, Khalil, and Aniorte (2020), Hernandez--
Ramos, Moreno, Bernabe, Carrillo, and Skarmeta (2015), Novak and 
Gerstinger (2010), Paridari et al. (2018), Peacock and Johnstone (2014), 
Wardell, Mills, Peterson, and Oxley (2016), Yoon, Dunlap, Butts, Rice, 
and Ramsey (2016) and SSingh, Sharma, and Park (2017). A thorough 
analysis of the security of building automation systems was presented in 
Novak and Gerstinger (2010) and Granzer et al. (2010), while the au-
thors in Peacock and Johnstone (2014) presented a threat analysis to 
identify the security-related challenges in the building automation 
domain. Wardell et al. (2016) presented a rule-based approach for 
analyzing the cybersecurity vulnerabilities in industrial control systems, 
which was demonstrated using a simple HVAC system. 

Hachem et al. (2020) proposed a software-based approach to address 
the challenges of security modeling and analysis for cyber-physical 
systems and it was applied to a real-life smart building. Yoon et al. 
(2016) proposed adopting the NFPA 1410 standards to investigate the 
readiness of first responders in real-world scenarios to attacks launched 
against critical infrastructures, and it was validated using a 
simulation-based HVAC system. In D’Innocenzo et al. (2016), the idea of 
the co-design of a resilient control system and communication protocol 
for networked control systems against node failures and attacks was 
addressed and applied to an HVAC system simulation environment. 
Hernandez-Ramos et al. (2015) proposed a network-based security 
framework for smart buildings based on an anomaly behavior analysis 
intrusion detection system, while a secure network architecture utilizing 
Multivariate Correlation Analysis (MCA) to detect DoS attacks in the 
real-time network traffic for a smart home was presented in Singh et al. 
(2017). Paridari et al. (2018) proposed a hybrid cyber-physical-security 
framework for building management systems using a model-based 
attack mitigation strategy using Kalman filters whenever an attack is 
detected using a hybrid detection framework combing expert knowledge 
with One-Class Support Vector Machine (OCSVM) approach. 

As summarized in Table 1, the analysis of the most previous works 
was conducted to assess the security and the cyber-related vulnerabil-
ities in intelligent buildings as in Granzer et al. (2010), Hachem et al. 
(2020), Novak and Gerstinger (2010), Peacock and Johnstone (2014), 
Wardell et al. (2016) and Yoon et al. (2016) while intrusion resilience 
control system was developed in D’Innocenzo et al. (2016). On the other 
hand, detection mechanisms from the network perspective were pro-
posed in Hernandez-Ramos et al. (2015) and Singh et al. (2017). How-
ever, we believe that examining the physical dynamics of the system can 
be very useful and can yield promising outcomes. Even though the au-
thors in Paridari et al. (2018) proposed a process-based attack detection 

Table 1 
Summary of the previous research works in the cybersecurity of building management systems.  

Reference Objective Approach Perspective (network/process) Validation method Attack detection? 

Novak and Gerstinger (2010) Security analysis – Network – ×

Granzer et al. (2010) Security analysis – Network – ×

Peacock and Johnstone (2014) Vulnerabilities analysis Rule-based Process Simulation ×

Wardell et al. (2016) Vulnerabilities analysis Rule-based Process Testbed ×

Hachem et al. (2020) Vulnerabilities analysis Rule-based Network Testbed ×

Yoon et al. (2016) Evaluation of the readiness of cyber-professionals Rule-based Process Simulation ×

D’Innocenzo et al. (2016) Resilient control Model- 
based 

Network Simulation ×

Hernandez-Ramos et al. (2015) Intrusion detection Data-driven Network Testbed ✓  
Singh et al. (2017) Intrusion detection Data-driven Network Testbed ✓  
Paridari et al. (2018) Attack diagnosis and resilience Hybrid Process Simulation ✓   
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framework, the detection model requires the knowledge of the physical 
rules and relationships between the system’s variables which might be 
complex or difficult to obtain for nonlinear processes in the system. 

In this paper, we present a semi-supervised, data-driven Isolation 
Forest (IF)-based attack detection approach for a multi-zone HVAC 
system in which the normal operation data are used to develop an IF- 
based detection model. Isolation forests are characterized by their low 
computational requirements, and they are based on the concept of 
isolation, which means pointing out anomalies. This improves the attack 
detection capability, and the use of isolation forests for attack detection 
has shown promising performance for water treatment plants (Elnour, 
Meskin, Khan, & Jain, 2020), smart grid networks (Ahmed, Lee, Hyun, & 
Koo, 2019), and information security (Vartouni, Kashi, & Teshnehlab, 
2018). Three schemes of the proposed approach are examined such that 
in Scheme 1, the detection model is developed using the raw data; while 
in Scheme 2 and Scheme 3, feature extraction is performed using Prin-
cipal Component Analysis (PCA) and 1D Convolutional Neural Network 
(CNN) Encoder model, respectively. The difference between the last two 
schemes is that the temporal features in the data are taken into 
consideration in Scheme 3. 

The main contribution of this work is as follows:  

1. We developed and presented a detailed simulator for a 3-floor, 12- 
zone HVAC system using TRNSYS, which is a reliable tool for 
simulating the behavior of HVAC systems because its modules have 
been developed to be consistent with practical data. The simulator is 
useful for simulating false injection attacks, which is advantageous to 
study and assess the security aspect of the HVAC systems from the 
process perspective. 

2. We proposed a strategy for assessing the level of severity of the at-
tacks launched against the HVAC system in terms of the occupants’ 
thermal comfort model and the estimated overall power usage of the 
system.  

3. We proposed a new approach using Isolation forest algorithm for 
HVAC systems attack detection. It is a data-driven approach utilizing 
just the normal data and without the need for the system mathe-
matical model. It is based on the principle of separating-away 
anomalous observations, resulting in improving the attack detec-
tion capability. 

The paper is organized as follows. In Section 2, the details of the 
development of the HVAC system simulation model are provided, which 
includes the description of the system under study, the description of the 
injected attacks’ models, and the specifications of the collected dataset. 
In Section 3, the details of the proposed approach and the model training 
procedure are presented. Results evaluation and discussion are demon-
strated in Section 4, and the conclusion is summarized in Section 5. 

2. Development of the HVAC system simulation model and 
attack models 

It is a strenuous task to obtain actual data or gain access to real 
building management systems due to reasons such as confidentiality, 
unfeasibility, etc. Thus, the use of simulation tools is common and 
convenient to provide flexible means to conduct the research and 
analysis with high fidelity. In this work, the HVAC system is simulated 
using Transient System Simulation Tool (TRNSYS), which is a graphical 
software environment that allows the simulation of transient systems’ 
behavior through energy and mass balance equations (Klein, G.M., & 
Sherrill, 2017). TRNSYS has been widely used for HVAC systems simu-
lation for research and development purposes as in Du, Fan, Jin, and Chi 
(2014), Elnour, Meskin, and Al-Naemi (2020), Every, Rodriguez, Jones, 
Mammoli, and Martinez-Ramon (2017), Qiu et al. (2020), Sun, Hu, and 
Spanos (2017) and Darure, Yamé, and Hamelin (2016), and it has 
proven to be a reliable tool. 

A public TESS HVAC library was established with TRNSYS and it is 

consistent with practical data. The accuracy and fidelity of TRNSYS 
models may be attributed to the fact that the modules have been 
developed by an authoritative department – the Thermal Energy Sys-
tems Specialists of the United States; and the software adopts Compo-
nent Object Method (COM) technology so that it can reproduce the 
HVAC system to a large extent (Qiu et al., 2020). As presented in Qiu 
et al. (2020), many of the existing TRNSYS modeling works tend to carry 
out follow-up work directly without verification as in Alibabaei, Fung, 
Raahemifar, and Moghimi (2017), Cutillas, Ramírez, and Miralles 
(2017), Diallo et al. (2017), Seo, Ooka, Kim, and Nam (2014) and Li, 
Joe, Hu, and Karava (2015). 

2.1. Description of the HVAC system simulator 

The building under this study is a 3-floor office building operating 
from 6 AM to 6 PM. The floors are labeled A, B, and C. Each floor consists 
of four zones with a total floor area of 120 m2 as shown in Fig. 1. Zones 
1–3 are office rooms with a volume of 75 m3 per zone, while Zone 4 is a 
hall with a volume of 135 m3. The building is equipped with a simple 
HVAC system for the cooling application as shown in Fig. 2. The tem-
perature at each zone is controlled using Proportional Integral Deriva-
tive (PID) controllers. The HVAC system is simulated using TRNSYS in 
which the cold output air from the Air Handling Unit (AHU) is supplied 
using a supply air fan to the zones through the Variable Air Volume 
(VAV) boxes terminals. The zones’ temperature controllers modulate the 
position of the air dampers according to the heat gains/losses within the 
zones to achieve the desired setpoints. The return air of the zones is fed 

Fig. 1. A sketch of the simulated 12-zone building.  

Fig. 2. The diagram of a typical HVAC system using the Variable Air Volume 
(VAV) system (Elnour et al., 2020). 
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back to the AHU through the return air ducts using the return fan. The 
exhaust air dampers (EA), outside air (OA) dampers, and return air (RA) 
dampers are operated simultaneously to control the proportions of the 
recirculated air and the ventilation air in order to maintain the indoor 
air quality. 

Each floor is equipped with a dedicated AHU which supplies the 
zones with the cold air at a constant temperature of 13 ◦C, and a variable 
flow rate controlled by the VAV box terminals. The water chiller and the 
cooling coil are connected via the chilled water tank that supplies chilled 
water to the cooling coil using a pump. The temperature of the chiller 
supply water is set at 9 ◦C. Using a PID controller, the water tank tem-
perature is controlled at 11 ◦C via a water valve regulating the flow of 
chilled water from the chiller to the tank. The system’s variables of in-
terest for the current study are: the 12 zones temperatures, TzAi, TzBi, and 
TzCi, for i = 1, …, 4, the temperature of the chilled water tank Tt, the 
temperature of the chiller supply water Tchiller, the temperatures of the 
AHUs’ supply air TaoA, TaoB, TaoC, the temperatures of AHUs’ output 
water TwoA, TwoB, TwoC, the ambient temperature Tamb, the zones VAV 
boxes control signals U1–U12, and the water tank valve control signal 
U13. 

The details of the TRNSYS simulator are shown in Figs. 3 and 4 . The 
overall configuration of the HVAC system is demonstrated in Fig. 3 – 
with its main elements being presented as green blocks. The four dia-
grams presented in Fig. 4 show the content of those green blocks. In 
addition, the building occupancy and the internal loads such as the 
equipment and lighting are taken into account as presented in Table 2. 

The main objective of the HVAC system is to provide healthy and 
comfortable indoor conditions for occupants at minimum energy utili-
zation. The HVAC system energy usage can be estimated by the amount 
of power consumption of the extensively operated equipment such as the 
chiller, fans, and pumps. The thermal comfort is the condition of mind 
that expresses the satisfaction of occupants with the indoor thermal 
environment and is assessed by subjective evaluation. It involves factors 
such as the occupants’ activity, clothing, indoor air temperature, and 
velocity, etc. The Predicted Mean Vote (PMV) index is used to predict 
the mean response of a larger group of people according to the ASHRAE 
thermal sense scale (Ogoli, 2007) in which feeling hot =+3, feeling 

warm =+2, feeling slightly warm =+1, neural = 0, feeling slightly 
cool = − 1, feeling cool = − 2, and feeling cold = − 3. 

Considering that the system under study is an office building, the 
thermal comfort model is simulated using TRNSYS for the factors pre-
sented in Table 3. 

2.2. Modeling of the HVAC system attacks 

The objective of a malicious agent compromising an HVAC system is 
mainly related to two factors: the building energy consumption, and the 
thermal comfort of occupants. An attack can be launched to degrade the 
building efficiency resulting in unnecessary energy consumption or to 
alter the level of satisfaction and comfort of the building occupants. In 
this work, the impact of the attack is evaluated according to the 
following definition. 

Definition 2.1. An attack is considered critical if at least one of the 
following conditions is met:  

• Condition 1: PMV >+1 or PMV < − 1,  
• Condition 2: Pactual >> Pnominal,Otherwise, the attack is considered a 

failed attack where Pactual (kJ/hr) and Pnominal (kJ/hr) are the actual 
total power utilization under attack, and the nominal total power 
utilization, respectively, under normal operation. 

That is, a critical attack causes unnecessary energy consumption 
and/or alters the level of satisfaction and comfort of the building oc-
cupants. Additionally, it is assumed that the intent of an adversary 
launching attacks against the HVAC system is to achieve at least one of 
these two conditions. Hence, if an attack is critical, the goal of the ad-
versary is achieved. 

The attacks demonstrated in this section are presented in Wardell 
et al. (2016) as the various types of expected attacks against industrial 
control systems and supervisory control and data acquisition systems. 
The possible malicious actions that can be launched against an HVAC 
system are: 

Fig. 3. Overview of the TRNSYS simulator of the 12-zone HVAC system.  
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2.2.1. Attack 1: Changing system setpoints 
Setpoints are used to determine the controller’s actions towards 

regulating the operation of the controlled system. Only authorized users 
can change the setpoints by accessing the controller from an engineering 
or operator console. The attack points for the HVAC system under study 
are the zones temperature setpoints, the chiller outlet temperature set-
point, the water tank temperature setpoint, and the AHU supply air 
temperature setpoint. 

2.2.2. Attack 2: Falsifying sensor measurements 
False measurements are received by the controller in man-in-the- 

middle attacks when sensors fail to provide real-time measurements to 
the control system due to malicious actions. The control system then 
fails to maintain a reliable system operation. The possible attack points 
are the sensors associated with the control loops, which are the zones’ 
temperature sensors and the tank temperature sensor. The attack model 
can be expressed as follows:  

(1) Frozen sensor measurement: 

xa(t) = xh(ts
a), for ts

a < t < te
a , (1)    

(2) Biased sensor measurement: 

xa(t) = xh(t) + at, for ts
a < t < te

a , (2) 

Fig. 4. The details of the TRNSYS-based HVAC system simulator. (For interpretation of the references to color in this figure citation, the reader is referred to the web 
version of this article.) 

Table 2 
The details of the building’s internal heat gain sources.  

Space Details 

Reception hall Occupation: 6 ± 1 persons (6 AM to 6 PM)   
Person: Standing, light work, 185 W  
Computer: 140 W  
Lights: 15 W/m2  

Halls Occupation: 5 ± 1 persons (6 AM to 6 PM)   
Person: Standing, light work, 185 W  
Lights: 15 W/m2  

Office rooms Occupation: 5 ± 1 persons (6 AM to 6 PM)   
Person: Seated, light work, typing, 150 W  
Computer: 140 W per person  
Lights: 5 W/m2   

Table 3 
The factors of the thermal comfort model in the building.  

Factor Value Description 

Clothing 1.0 col Typical business suits 
Air velocity 0.1 m/s Nominal air velocity 
Metabolic rate 1.2 mets Seated, light work  

1.6 mets Standing, light work  
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where xa(t) and xh(t) are the falsified and healthy sensor measure-
ments, respectively, tsa and tea are the attack start and end times, 
respectively, and at is the amount of bias introduced in the falsified 
sensor measurements. 

2.2.3. Attack 3: Falsifying control signals 
A malicious agent gaining access to the controller-plant communi-

cation link can modify the control signals before sending them to the 
plant with the objective of harming the controlled equipment, e.g. a fan, 
a pump, etc. or perturbing the system operation. Similar to Attack 2, the 
possible attack points are the control signals for the control loops of the 
zones’ temperatures and the tank temperature. The attack model is 
described by:  

(3) Frozen control signal: 

ua(t) = uh(ts
a), for ts

a < t < te
a , (3)    

(4) False control signal: 

ua(t) = uh(t) + bt, (4)   

where ua(t) and uh(t) are the falsified and valid control signals, 
respectively, uh(ts

a) is the valid control signal at time ts
a when the attack is 

launched, and bt is the amount of bias introduced in the falsified control 
signal. 

2.2.4. Attack 4: Modifying command signals to components 
Some components of the HVAC system operate on a specified com-

mand by an authorized user or according to the specification of the 
system operation without the need for continuing regulation. A mali-
cious agent can tamper with the command signals sent to these com-
ponents such as turning off a fan or a pump, forcing them to operate at a 
slower speed than they should, or manipulating the positioning of 
dampers, etc. The potential HVAC system attack points are the cooling 
coil pump, supply and return air fans, and exhaust and outside dampers. 
The component’s command signal c can be expressed as: 

c =

{
ch, for t ≤ ts

a or t ≥ te
a ,

ca, for ts
a < t < te

a ,
(5)  

where ch and ca are the valid and falsified command signals, respec-
tively, provided that ch ∕= ca. 

2.3. Description of the HVAC system dataset 

The dataset consists of two logs in which the first log contains normal 
operational data collected for four months – from June to September- 
with a total of 194301 samples that was used for the models’ develop-
ment in the training and validation phases. The second log represents 
data collected in a span of 20 days of system operation with a total of 
8840 samples, during which the 16 attacks listed in Table 4 were 
injected by modifying the sensor’s setpoint, sensor’s reading, or actua-
tor’s control signal as described in Section 2.2, comprising about 50% of 
the data log, 10 of them were critical according to Definition 2.1. The 
subset of the second log containing only the critical attack scenarios was 
used for the models’ testing phase. The reason for excluding the samples 
corresponding to the failed attacks is to achieve unbiased evaluation 
given that those attacks are unlikely to be detected as they do not reflect 
significantly on the system operation. Table 4 lists the description of the 
attacks, the time they were injected, and their indices such that an attack 

Table 4 
List of injected attacks on the HVAC system simulator.  

Attack index Description Attack time 

1.1 Changing the setpoint of the chiller to 14 ◦C  Day 1, 12:00 
1.2 Changing the setpoint of the water tank to 16 ◦C  Day 2, 06:00 
1.3 Changing the setpoint of the AHU to 20 ◦C  Day 2, 10:00 
1.4 Changing the setpoint of Zone A1 to 26 ◦C  

(failed attack)a  
Day 20, 11:00 

1.5 Changing the setpoint of Zone C4 to 18 ◦C  
(failed attack)a  

Day 1, 03:00 

2.1 Freezing Zone B1 reading (failed attack)a Day 5, 17:00 
2.2 Freezing Zone C4 reading Day 7, 07:30 
2.3 Freezing Zone A2 reading Day 9, 05:30 
2.4 Freezing Zone C3 reading Day 10, 06:00 
2.5 Introducing a bias of 3 ◦C to Zone B3  Day 3, 08:00 
3.1 Freezing the control signal of Zone C2 (failed attack)a Day 10, 15:00 
3.2 Freezing the control signal of Zone B3 (failed attack)a Day 13, 18:00 
3.4 Freezing the control signal of Zone B1 Day 15, 06:00 
3.5 Setting control signal of Zone B2 to 0 (failed attack)a Day 19, 06:00 
3.6 Setting control signal of Zone A3 to 1 Day 19, 20:00 
4.1 Reducing the AHU-B water pump to 1/3 of  

its speed 
Day 18, 12:00  

a Failed attack is when the adversary fails to achieve its objective that is 
causing unnecessary energy consumption and/or altering the thermal comfort of 
the occupants. 

Fig. 5. The diagram of the proposed isolation forest-based HVAC system attack detection framework. The framework consists of an offline training phase during 
which the models are developed and an online detection phase in which the developed models are used to perform attack detection. Three schemes are investigated, 
which are Scheme 1, using raw data; Scheme 2, using PCA for feature extraction; and Scheme 3, using 1D CNN-based encoder for temporal feature extraction. Data 
pre-processing is required for Schemes 2 and 3 to eliminate the effect of the diverse ranges of the different data features. The pre-processing step in Scheme 3 includes 
data segmentation to convert the data samples to 1-dimensional vectors form. Scheme 1 and Scheme 2 have the same detection function. 
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is identified by its type and number. For example, Attack 1.2 was 
launched on Day 2 at 6:00, and it presents the second injected attack of 
type 1, changing the setpoint. It is worth noting that the attacks were 
launched at diverse times throughout the day to cover the different 
system’s operational times, but they are not listed in Table 4 according 
to the order they were launched. The dataset was collected for a sam-
pling duration of 1 min. It consists of 50 variables, which are the hour of 
the day, the measurements of the zones’ temperatures, the AHUs’ supply 
air temperatures, the cooling coils’ return water temperatures, the water 
tank temperature, the chiller’s output water temperature, the ambient 
temperature, the control signals, the hour of the day, and the tempera-
ture setpoints of the zones, the AHU’s supply air, the water tank, and the 
chiller’s output water. 

3. Development of the proposed attack detection approach 

Isolation forest algorithm has been proven to be excellent in anomaly 
detection as it is based on the principle of separating-away observations 
that are anomalous (Liu, Ting, & Zhou, 2012). As shown in Fig. 5, three 
independent schemes of the proposed isolation forest-based approach 
are examined. In Scheme 1, a detection model is developed using the 
raw data. Feature extraction is a popular and effective strategy for 
improving the performance of the machine-learning algorithms and 
potentially reducing the computational complexity of ML models. 
Hence, feature extraction models are investigated in two additional 
configurations to complement the isolation forest model, which are 
Scheme 2 and Scheme 3 using Principal Component Analysis (PCA) and 
1D Convolutional Neural Network (1D CNN) Encoder model, respec-
tively. The difference between the last two schemes is that the temporal 
features in the data are taken into consideration in Scheme 3. Unlike the 
isolation forest algorithm, data normalization is a necessary step before 
applying feature extraction using PCA and 1D CNN to eliminate the 
effect of the diverse ranges of the different data features, which can 
cause model’s sub-optimality during the training phase. 

3.1. Background 

3.1.1. Principal Component Analysis (PCA) 
PCA is a multivariate statistical analysis method that is widely used 

in data dimensionality reduction. The projection matrix P ∈ ℝn×l is used 
to transform the data onto the new feature subspace where n is the 
number of variables, and l is the number of principal components. It is 
composed of the first l eigenvectors of the correlation matrix of the data 
that are associated with the largest eigenvalues. 

The data transformation of a normalized measurement vector x ∈

ℝ1×n to the new data vector x̂ ∈ ℝ1×l is expressed as: 

x̂ = xP. (6)  

3.1.2. 1D Convolutional Neural Network Auto-Encoder 
An auto-encoder is a neural network composed of an encoder and a 

decoder parts and is trained to reproduce its input at the output. The 
encoder produces a compressed representation of the input that is fed to 
the decoder to reconstruct the input at the output layer (Goodfellow, 
Bengio, & Courville, 2016). The objective of the auto-encoder’s training 
is to minimize the error between the input and the output. However, 
attentive design of its internal structure is required to avoid buffering 
the input to the output layer. The 1D CNN-based auto-encoder model 
consists of a total of 7 layers, which are the input layer, the output layer, 
and five hidden layers. They are convolution layers (Conv) in which 
several convolution windows called filters or kernels slide over the input 
as demonstrated in Fig. 6. They are characterized by several hyper-
parameters such as:  

1 The activation function,  
2 The size of filter k ∈ ℝ, which defines the field of view of the 

convolution,  
3 The number of filters Fc ∈ ℝ representing the number of feature 

maps,  
4 The stride ∈ ℝ representing the size of the convolution step,  
5 The type of convolution, which can be same, valid, or dilated. In the 

same convolution, zero-padding is performed on the input to pro-
duce an output of the same size as the input, whereas in the valid 
convolution, zero-padding is not performed and the output shape 

Fig. 6. The operation of a typical convention layer is performed across every channel of the input. (a) The sliding of the convolution window (filter) over the input. 
(b) The convolution operation (valid convolution). 

Table 5 
Details of the 1D CNN-based auto-encoder network.   

Layer identifier Dimension of the layer’s output 

Encoder Input (w,n)   
Conv 1 (w,F1)   

Down-sampling 1 (Pooling 1) 
(

w
p1

, F1

)

Conv 2 
(

w
p1

, F2

)

Down-sampling 2 (Pooling 2) 
(

w
p1 × p2

, F2

)

Bottleneck Conv 3 
(

w
p1 × p2

, F3

)

Decoder Conv 4 
(

w
p1 × p2

, F2

)

Up-sampling 1 
(

w
p1

, F2

)

Conv 5 
(

w
p1

, F1

)

Up-sampling 1 (w,F1)   
Conv 6 (w,n)   
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corresponds to (Input size − k)/stride+ 1. Dilated convolution is used 
to increase the receptive field of the layer without increasing the 
computations. It is determined by the dilation factor fD ∈ ℝ. The size 
of the dilated convolution’s output is (Input size − ((k − 1)× fD + 1))
/stride+ 1. 

The dimension of the output of each layer is listed in Table 5. The 
dimension is characterized by the pair (d1, d2) where d1 represents the 
number of time instants of the 1D data, and d2 represents the number of 
channels/features. For example, the output of Conv 1 layer is (w, F1) 
with F1 channels and each channel containing w points. The first four 
layers represent the encoder part of the network. The dimension of the 
input to the auto-encoder network is w× n, where w is the frame 
(sample) size, and n is the number of variables. The number of filters 
used in the layers Conv 1, Conv 2, and Conv 3 are F1, F2, and F3, 
respectively, such that n > F1 > F2 > F3. Each Conv layer is followed by 
a pooling layer to perform sub-sampling along the first dimension by a 
rate of pi. The decoder performs the decompression in which layers Conv 
4, Conv 5, and Conv 6 have F2, F1, and n filters, respectively, provided 
that the up-sampling is performed after each Conv layer. 

Time-series signals are sequences of data points of successive mea-
surements or observations made over a time interval. Since the input to 
the 1D CNN is expected to be in the form of 1-dimensional vectors, data 
segmentation is performed by slicing the time-series into frames of equal 
lengths as demonstrated in Fig. 7. The segmentation step of a time-series 
involves two parameters, which are the frame size w, representing the 
number of data points in a single slice, and the stride s = w − lp, 
reflecting the number of overlapping data points between the successive 
frames. 

3.1.3. Isolation Forest 
Isolation Forest (IF) is an unsupervised Machine Learning algorithm 

that is used for anomaly detection (Liu et al., 2012). It is an ensemble 
regressor encompassing several isolation trees in which each tree is 
trained using a random subset of the training data. For a dataset with n 
number of features and m data samples, the parameters associated with 
an isolation forest are the number of trees nestimators, the size of the data 
subset used to train each tree mmax ≤ m, and the subset of the data fea-
tures used to train each tree nmax ≤ n. The isolation forest uses the 
concept of isolation to separate-away anomalies. Recursive binary 
splitting is performed by each isolation tree for a random subset of the 
data until all samples are isolated. 

Anomalies are different from normal observations, and they can be 
easily isolated. It is expected that they will be closer to the root, and 
hence have a shorter path. The anomaly detection for a given data 
sample x is made upon the score s(x) relative to the detection threshold ϵ 
as follows: 

s(x) = 2−
h(x)
H , (7)  

where H is the average expected path length of trees in the forest pro-
vided that anomalies are labeled as 1 while normal observations are 
labeled with 0, and h(x) denotes the average path length on all trees. The 
anomaly is detected using the following function: 

y(x) =
{

0 if s(x) > ϵ,
1 if s(x) ≤ ϵ . (8)  

3.2. Detection function 

As shown in Fig. 5, the outputs of the isolation forest model in 
Schemes 1 and 2 are evaluated using a detection function. An observa-
tion window of frame size wf is checked such that an attack is detected if 
the output of the detection model y is 1 for at least 80% of the obser-
vation period. The stride between the successive observation windows is 
1, maintaining the maximum rate of the detection procedure. The de-
cision function is not required in Scheme 3 since feature extraction is 
performed on a sequence of data points of length w. 

3.3. Performance evaluation metrics 

The confusion matrix is typically used to evaluate the performance of 
the classification model. It is a form of contingency table with two di-
mensions identified as True and Predicted, and set of classes in both 
dimensions as presented in Table 6. The following performance metrics 
are derived from the confusion matrix (Ting, 2010):  

(9) Precision: It is also called Positive Predictive Value (PPV), which 
is a measure of the closeness the set of predicted results and it is 
expressed as, 

PPV =
TP

TP + FP
. (9)    

(10) Recall: It is called True Positive Rate (TPR) or Recall and is 
calculated by, 

TPR =
TP

TP + FN
. (10)   

3.4. Models training 

As mentioned previously, the system’s dataset that was used to 
develop the models consists of 50 features of the time, sensors’ mea-
surements, setpoints, and actuators control signals. For PCA-based 
feature extraction in Scheme 2, PCA was performed to retain 95% of 
the cumulative explained variance resulting in 9 principal components. 
For developing the 1D CNN model for Scheme 2, data segmentation was 
performed on the system data, which consist of 50 channels as 
mentioned in Section 2.3, with each channel representing a time-series. 
Data segmentation involves two parameters, which are the frame size w, 
representing the number of data points in a single slice, and the stride s, 
reflecting the number of overlapping data points between the successive 
frames. The two parameters were optimized to capture temporal events 

Fig. 7. Data segmentation of a time-series into frames of length w with a stride 
of s = w − lp. 

Table 6 
Table of confusion for a 2-class problem.  
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or features effectively. The training of the 1D CNN-based auto-encoder 
network was conducted using Keras library, which is an open-source 
neural-network library written in Python for the hyper-parameters 
ranges presented in Table 7. Same convolution with a stride of 1 was 
used in all the Conv layers, and the Rectified Linear Unit (ReLU) acti-
vation function was used since it is the most efficient and commonly 
used function with CNNs. 

The training of the isolation forest models in the three schemes was 
conducted using Scikit-learn library, which is an open-source Machine 
Learning library for the Python programming language (Pedregosa 
et al., 2011). The training was conducted using 5-fold cross-validation, 
which is a well-known approach used for the validation of Machine 
Learning-based models to assess the model’s generalization ability 
especially when the amount of data is limited. The dataset was divided 
equally into 5 random subsets – also called folds. Then each IF model 
was trained five times, and each time one fold (20% of the data) was 
used as the validation set and the remaining ones for training (80% of 
the data). Grid search was utilized for model tuning given the limited 
number of hyper-parameters associated with the isolation forest model 
for the ranges presented in Table 7 and to achieve a maximum false 
alarm rate of 5% on the training dataset. The computer used for the 
training has 64 GB RAM and 12-cores AMD Ryzen 9 3900X CPU with 3.8 

GHz speed using 64 bit Windows 10 Pro OS. 
Table 8 represents the validation dataset’s reconstruction error of 

some of the 1D CNN-based auto-encoder models, which is the Mean- 
Squared-Error (MSE) between the input and the output of the model 
of 12 of the trained CNNs. Overly, it was found that the reconstruction 
error was improved using a larger frame size w and an average kernel 
size k of 5. The CNN-based auto-encoder with the least MSE was chosen, 
which was CNN-AE 11 using w = 20, k = 5, F1 = 15, F2 = 7, and F3 =

3. 
A sample of the effect of the hyper-parameters choices for the 

isolation forest model in Scheme 2 for the detection framework is 
demonstrated in Figs. 8–10  by the Receiver Operating Characteristic 
(ROC) curves. As shown in Fig. 8, the number of trees nestimators used for 
the isolation forest model did not have a significant effect on the model’s 
detection capability. However, the computational requirement of the IF 
model is directly proportional to nestimators. In Figs. 9 and 10, the per-
formance of the isolation forest is improved for low values of mmax and 
nmax as the model’s ability to identify anomalous observations will be 
improved when examining relativity small subset of the dataset across 
the several trees in the isolation forest model in terms of the data fea-
tures n and data samples m. 

4. Evaluation and discussion 

The evaluation of the performance of the proposed framework is 
demonstrated and compared with standard ML-based approaches. The 
three isolation forest-based attack detection schemes were evaluated 
using a subset of the second data log consisting of the critical attack 
scenarios only. As mentioned previously, the reason for excluding the 
samples corresponding to the failed attacks is to achieve unbiased 

Table 7 
The ranges of the hyper-parameter values for the 1D CNN-based auto-encoder 
network and the isolation forest model.  

1D CNN IF 

w  k  F1  nestimators  mmax  nmax  

12–20 3–
w
2  

10–30 50–400 27–214  2–50  

Table 8 
The performance of the 1D CNN-based auto-encoder models across the hyper-
parameter space.  

CNN name w  k  F1  F2  F3  MSE 

CNN-AE 1 12 3 13 6 3 0.161 
CNN-AE 2  3 14 7 3 0.142 
CNN-AE 3  4 16 8 4 0.152 
CNN-AE 4  5 14 7 3 0.154 
CNN-AE 5 16 3 16 8 4 0.170 
CNN-AE 6  4 11 5 2 0.164 
CNN-AE 7  4 15 7 3 0.134 
CNN-AE 8  5 15 7 3 0.154 
CNN-AE 9 20 3 12 6 3 0.153 
CNN-AE 10  3 30 15 7 0.145 
CNN-AE 11  5 15 7 3 0.128 
CNN-AE 12  9 12 6 3 0.177  

Fig. 8. ROC curves for models of PCA-IF with mmax = 2000, nmax = 2, and 
varying nestimators. 

Fig. 9. ROC curves for models of PCA-IF with nestimators = 50, nmax = 2 and 
varying mmax. 

Fig. 10. ROC curves for models of PCA-IF with nestimators = 50, mmax = 200, and 
varying nmax. 

M. Elnour et al.                                                                                                                                                                                                                                 



Sustainable Cities and Society 69 (2021) 102816

10

evaluation given that those attacks are unlikely to be detected as they do 
not reflect significantly on the system operation. As presented in 
Table 10, detection models utilizing One-Class Support Vector Machine 

(OCSVM), k-Nearest Neighbors (kNN), Local Outlier Factor (LOF), and 
PCA were included in the comparison using the implementation in 
(Zhao, Nasrullah, & Li, 2019) as they are widely accepted for anomaly 
detection applications. Brief descriptions of each algorithm are pre-
sented in Table 9. 

Most of the attack samples were detectable using kNN, LOF, and PCA 
as indicated by the recall value, which represents the percentage of 
correct positive predictions among all positive cases. However, their 
performance was unsatisfactory due to the relatively high false alarms 
inferred from the low precision, which was about 43% on average for the 
three approaches. The precision of the OCSVM-based detection model 
was the highest with about 98%, but its ability to detect attacks was 
poor, with a recall of 17%, which is attributable to the complexity and 
multidimensionality of the system’s data such that the two classes; 
normal and attack, are not separable by a hyperplane. The IF-based 
model was able to detect around 50% of the attack instances with an 
overall precision of about 81%. This performance is due to the under-
lying theory of the isolation forests, which works based on separating- 
away samples that are anomalous. 

The performance was improved with the use of PCA for data 
dimensionality reduction resulting in a precision of 90% and a recall of 
about 61%. The PCA-IF attack detection approach scored the best per-
formance with an overall increase of 8% in accuracy compared to the IF- 
based and the CNN-IF-based schemes. Even though the CNN-IF detection 
scheme’s performance in identifying attack instances was the best as 
indicated by the recall value of 74%, the precision was the lowest at 
about 69%, meaning a high rate of false alarms. This can be explained by 
the fact that the 1D CNN auto-encoder was employed to extract abstract 
representations using a set of 1-dimensional kernels from signals that 

Table 9 
Descriptions of the standard Machine Learning algorithms used.  

Algorithm Description Main parameter 

PCA • It is a linear dimensionality reduction 
technique used to project the data to a lower- 
dimensional space using Singular Value 
Decomposition. 
• The Principal Components with high 
eigenvalues capture most of the variance in 
the data. 
• A low-dimensional representation 
constructed by p Principal Components can 
capture most of the variance in a normal data 
sample.  

p: number of Principal 
Components.  

OCSVM • It works by mapping the data into the 
feature space corresponding to the kernel 
and finding the hyperplane that separates 
them from the origin with maximum margin. 
• The circumstance of the sample is 
determined by evaluating which side of the 
hyperplane it falls on in the feature space  

Kernel function. 

kNN • It is a global distance-based algorithm. 
• It depends on the measure of the distance 
from a sample to its kth nearest neighbor.  

k: number of nearest 
neighbors.  

LOF • It is a local density-based algorithm. 
• It depends on the measure of the local 
deviation of the density of a sample with 
respect to its neighbors.  

k: number of nearest 
neighbors.   

Table 10 
Comparison results between the different approaches.  

Method kNN LOF PCA OCSVM IF PCA-IF 1D CNN-IF 

Precision 37.33% 38.07% 47.40% 97.78% 80.93% 90.01% 68.85% 
Recall 100.00% 100.00% 93.85% 17.10% 50.40% 60.49% 74.28%  

Fig. 11. The performance of the PCA-IF detection framework on Attack 1.1: Changing the setpoint of the chiller to 14 ◦C. (a) The temperature of chiller’s outlet water 
and AHU-A’s supply air, (b) the temperature of Zone A3, (c) the control signal of Zone A3, (d) the predictions of the detection framework for Attack 1.1, (e) the 
thermal comfort index of Zone A, (e) the total power usage of the HVAC system. 
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exhibit slow and steady dynamics overly. The HVAC system is charac-
terized by its slow-moving processes concerning temperature and flow 
rate change. Therefore, the use of the 1D CNN-based temporal feature 
extraction model was not advantageous. 

Using the attack list in Table 5, Figs. 11–17 demonstrate the per-
formance of the PCA-IF-based detection framework on examples of each 
attack type described in Section 2.2. Overly, it is evident that there are a 
couple of incidents of false alarms, but they are minimal and not 
frequent. In Attack 1.1, the setpoint of the chiller was increased from 9 

to 14 ◦C at 12:00 as shown in Fig. 11(a). This attack resulted in 
increasing the water tank temperature and consequently, rising the 
AHUs’ supply air temperatures. It caused a significant impact on the 
power utilization as demonstrated in Fig. 11(f) due to the system’s 
attempt to meet the cooling load of all the zones by operating the fans 
and pumps at full speed. As an example, the effect of this attack on Zone 
A3 was demonstrated in which the control signal of the zone’s VAV box 
started to increase to maintain the zone’s at the desired setpoint – which 
was 18 ◦C. It is increased gradually to over 100% of its expected value by 

Fig. 12. The performance of the PCA-IF detection framework on Attack 2.4: Freezing Zone C3 reading. (a) The temperature of Zone C3, (b) the control signal of Zone 
C3, (c) the predictions of the detection framework for Attack 2.4, (d) the thermal comfort index of Zone C3, (e) the total power usage of the HVAC system. 

Fig. 13. The performance of the PCA-IF detection framework on Attack 3.4: Freezing the control signal of Zone B1, (a) the temperature of Zone B1. (b) the control 
signal of Zone B1, (c) the predictions of the detection framework for Attack 3.4, (d) the thermal comfort index of Zone B1, (e) the total power usage of the 
HVAC system. 
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17:00 as shown Fig. 11(c). The zone temperature was not significantly 
altered by the attack with only 3% deviation from the setpoint and hence 
the thermal comfort was not alarmed – indicated by the PMV index 
(Fig. 11(e)). It is worth noting that the same impact was observed on the 
remaining zones as the chiller system is a central unit supplying to all the 
AHUs; hence, the conspicuous increase in the total power utilization in 
the system shown in Fig. 11(f). 

In Attack 2.4, the reading of Zone C3 temperature sensor was frozen 

at the start of the day operation at 5:59 (Fig. 12(a)) and consequently, 
the control system operated using the frozen sensor reading resulting in 
a fully closed VAV damper (Fig. 12(b)). Failing to accommodate for the 
actual cooling load during the daytime operation, it reflected on the 
occupants’ thermal comfort dreadfully as indicated by the PMV index 
>1 (Fig. 12(d)) indicting hot indoor conditions. 

Fig. 13 represents the attack detection performance on Attack 3.4 in 
which the control signal of Zone B1 was stuck at the end of the night 

Fig. 14. The performance of the PCA-IF detection framework on Attack 3.6: Setting control signal of Zone A3 to 1. (a) The temperature of Zone A3, (b) the control 
signal of Zone A3, (c) the predictions of the detection framework for Attack 3.6, (d) the thermal comfort index of Zone A3, (e) the total power usage of the 
HVAC system. 

Fig. 15. The performance of the PCA-IF detection framework on Attack 4.1: Reducing the AHU-B water pump to 1/3 of its speed. (a) The temperature of AHU-B’s 
supply air, (b) the temperature of Zone B2, (c) the control signal of Zone B2, (d) the predictions of the detection framework for Attack 4.1, (e) the thermal comfort 
index of Zone B. (e) the total power usage of the HVAC system. 
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operation as shown in Fig. 13(b). It resulted in failing to control the 
zone’s temperature at the setpoint (Fig. 13(a)) and hence the thermal 
comfort of Zone B1’s occupants was altered as indicated by the PMV 
index (Fig. 13(d)). 

While in Attack 3.6, the control signal of Zone A3 was set to 1 during 
the night operation at 20:00 (Fig. 14(b)). This resulted in a negative 
thermal discomfort of the zone’s occupants with PMV < − 1 as demon-
strated in Fig. 14(d) due to the extreme cold indoor environment as the 

temperature of Zone A3 decreased to 16 ◦C at the instant the attack was 
launched (Fig. 14(a)). It is worth noting that the total power utilization 
of the system was not acutely affected as shown in Fig. 14(e) because 
only a single zone was affected by this attack resulting in an inconse-
quential power usage increase relative to the overall power utilization of 
the system. 

Attack 4.1 demonstrates falsifying the component’s command to 
operate at a lower speed; in this case, it was the water pump of AHU-B’s 

Fig. 16. The performance of the PCA-IF detection framework on Attack 1.4: Changing the setpoint of Zone A1 to 26 ◦C, (a) the temperature of Zone A1, (b) the 
control signal of Zone A1, (c) the predictions of the detection framework for Attack 1.4, (d) the thermal comfort index of Zone A1. (e) the total power usage of the 
HVAC system. 

Fig. 17. The performance of the PCA-IF detection framework on Attack 3.1: Freezing the control signal of Zone C2. (a) The temperature of Zone C2. (b) The control 
signal of Zone C2. (c) The predictions of the detection framework for Attack 3.1. (d) The thermal comfort index of Zone C2. (e) The total power usage of the 
HVAC system. 
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coil resulting in deviating the temperature of the supply air of AHU-B 
(TaoA) from its setpoint (Fig. 15(a)). It is considered a low-impact 
attack as the temperature of the zones on floor B was not extremely 
influenced. An example is presented in Fig. 15(b) as the attack caused 
the temperature of Zone B2 to increase to 22 ◦C. Even though it was 
shifted from the setpoint by +2 ◦C, it was still acceptable as indicated by 
the PMV index in Fig. 15(c). Hence, the attack was detected after 3 hours 
after a noticeable increase in power consumption. 

Figs. 16 and 17  demonstrate samples of the failed attacks. In Attack 
1.4, the setpoint of Zone A1 was increased to 26 ◦C at 11:00 AM, but the 
attack did not influence the system’s energy efficiency nor the thermal 
comfort significantly as indicated by the PMV index that was still below 
+1 (Fig. 16(d)). In addition, in Attack 3.1, the control signal of Zone C2 
was frozen at 0.2 during the day (Fig. 17(b)) resulting in shifting the 
zone’s temperature by about − 2 ◦C from its setpoint, but without 
altering the thermal comfort severely or increasing the energy usage 
immensely. 

As mentioned previously, the degree of attack severity is determined 
by the measure of its impact on the system’s power usage and the oc-
cupants’ thermal satisfaction as in Definition 2.1. Therefore, the PCA-IF 
detection framework is sufficient for identifying the occurrence of at-
tacks that can reduce the efficiency of the HVAC system or cause 
extreme thermal discomfort. Moreover, it was observed that detection is 
quicker and more robust for attacks with greater impact or severity. For 
instance, Attack 1.1 was detected within less than 15 min. It is 
considered a high-impact attack as it targets a central unit as the chiller 
system. If its operation is perturbed, inevitably the function of the other 
components of the HVAC system is adversely affected, unlike the slow 
detection of Attack 4.1 which was identified after about 3 hours. 

The computational overhead varies among the different Machine 
Learning algorithms, and it is highly dependent on the choice of the 
algorithm’s hyper-parameters. It is defined by the amount of time and 
space resources required to run the algorithm, and it can be approxi-
mated based on the number of computational operations performed 
using the algorithm. For instance, CNNs involve extensive computations, 
and hence, they are characterized by their high computational 

complexity. The key advantage of isolation forests is their low compu-
tational complexity, which is in the order of log(mmax)× nestimators × n, 
where log(mmax) reflects the depth of the trees, nestimators is the number of 
trees, and n is the number of features (Liu et al., 2012). The number of 
features in the data is a key element affecting the computations involved 
in the isolation forest model directly and indirectly. That is, as the 
dimension and complexity of the dataset increase, larger values of 
isolation forest’s hyper-parameters are used to achieve adequate 
detection performance, leading to increased computational overhead. 
This can be tackled by means of dimensionality reduction, which can 
improve the computational complexity by removing the redundancy in 
the data, and consequently reducing its feature space. 

4.1. Comparison with the existing works 

As previously demonstrated in Table 1, Hernandez-Ramos et al. 
(2015) and Singh et al. (2017) presented data-driven attack detection 
frameworks for smart buildings. The primary difference between those 
works and the proposed IF-based approach is the detection objective, 
which is towards securing the network of the building management 
systems against security breaches with no regard to the dynamics of the 
system/process. That is, the developed approaches in Hernandez-Ramos 
et al. (2015) and Singh et al. (2017) work by analyzing the network 
traffic data for abnormality in the network packets flow. They rely on 
network data and IoT strategies for attack detection. Since examining 
the physical dynamics of the system can be very useful and can yield 
promising outcomes, in this paper, we proposed the isolation 
forest-based attack detection framework in which the detection is made 
based on analyzing the process data, i.e. sensors and actuators signals, to 
examine the behavior of the HVAC system and identify the signs of at-
tacks impacting the system operation. An analytical comparison is pre-
sented in Table 11 highlighting the contrast between those works and 
the proposed framework and presenting a summary of the frameworks’ 
descriptions. 

Table 11 
Comparison between the proposed IF-based HVAC attack detection and the recent works from the literature.  

Reference 

Hernandez-Ramos et al. 
(2015) 

Objective: Detection of network security breaches  

Description of proposed framework:  
1 – An IoT-based security system is proposed by integrating coherent data as fundamental components 
2 – It utilizes the available localization data to implement the access control for the building devices 
3- It employs authentication and authorization mechanisms for service access protection  
Evaluation metric: N/A  
Limitation: It was not integrated into the constrained IoT environments for defining alternative approaches to validate its suitability 

Singh et al. (2017) Objective: Detection of network security breaches  
Description of proposed framework:  
1 – Multivariate correlation analysis technique and the known attack database are utilized to 
analyze the flow packets in the network layer 
2 – The received network traffic data is analyzed as follows: 
(a) It is compared with the attack database for a match, if exists, an alarm is raised and the packet is dropped 
b) Unmatched traffic data is analyzed using the correlation extracted features using data flow diagrams 
– if vulnerability is detected, the attack database gets updated, alarm is raised, and the packet is dropped 
– if vulnerability is not detected, the packet gets forwarded  
Evaluation metric: throughput, round-trip-time, accuracy  
Limitation: It requires the availability of attack historical network data and it has unpredictable performance for unseen attacks. 

Our work Objective: Detection of sensor and actuator FDI attacks  
Description of proposed framework:  
1 – The detection model is used to detect the abnormal system’s operation data of the sensors and actuators  
2 – It is developed utilizing just the normal data and without the need for the system mathematical model  
3 – Isolation forest algorithm is used that utilizes the principle of separating-away anomalous observations and hence improves the attack detection 
capability  
Evaluation metric: precision, recall  
Limitation: It can only detect attacks that impact the system operation by causing excessive energy consumption and/or altering the thermal 
comfort levels  
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5. Conclusion 

A semi-supervised, data-driven isolation forest-based attack detec-
tion approach for a multi-zone HVAC system was proposed in which the 
normal operation data were used to develop the detection model. Using 
the data generated from the TRNSYS model, three schemes of the pro-
posed approach were examined based on the representation of the data 
used to develop the model as 1) the raw data for Scheme 1, PCA- 
extracted features for Scheme 2, and 3) 1D CNN autoencoder- 
extracted features for Scheme 3. Feature extraction using PCA was 
found to be useful as the redundancy and the uncorrelated components 
are removed, unlike the 1D CNN-based model due to the steady and slow 
nature of the HVAC system dynamics. The performance of the proposed 
approach was compared with standard Machine Learning-based ap-
proaches, which are kNN, LOF, PCA, and OCSVM, and it was found 
promising with low computational complexity, quick and reliable 
detection, and a relatively low false alarm rate scoring a precision of 
90% and a recall of about 61%. 

It was found that the detection framework was capable of detecting 
critical attacks launched against the HVAC system, preciously the ones 
that resulted in notable system inefficiency and/or thermal discomfort. 
Moreover, the detection time for critical attacks with low impact on the 
HVAC system was longer unlike the attacks causing considerable 
perturbation to the system. It is worth noting that even though Denial- 
of-Service (DoS) attacks are common in industrial control systems, we 
have not addressed them since we evaluated the system operation from 
the process point of view. However, the nature of the DoS attack and its 
modeling is different and the main issue for DoS is the vulnerability 
analysis of the system to this type of attack and from the attack detection 
point of view, DoS attacks can be easily detected by monitoring the 
received information in each node. Hence, the DoS attack is out of the 
scope of this work which is mainly focusing on the attack detection 
problem. Moreover, the effect of the DoS attack is generally identical to 
a frozen sensor reading or a frozen control signal as indicated by 
Sánchez, Rotondo, Escobet, Puig, and Quevedo (2019), and both types of 
attacks have been addressed in the presented evaluation (Attacks 
2.1–2.4, and 3.1–3.4). 
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