
Send Orders for Reprints to reprints@benthamscience.ae

 Recent Advances in Communications and Networking Technology, 2016, 5, 000-000 1

 2215-0811/16 $58.00+.00 © 2015 Bentham Science Publishers

Performance Evaluation of Multi-Cloud Management and Control Sys-
tems

Lav Gupta1, Raj Jain1,*, Mohammed Samaka2, Aiman Erbad2 and Deval Bhamare2

1Department of Computer Science and Engineering, Washington University in St Louis, St. Louis, MO,

USA and 2Department of Computer Science and Engineering, Qatar University, Doha, Qatar

Abstract: Most global enterprises and application service providers need to use resources from multiple

clouds managed by different cloud service providers, located throughout the world. The ability to manage

these geographically distributed resources requires use of specialized management and control platforms. Such

platforms allow enterprises to deploy and manage their applications across remote clouds that meet their ob-

jectives. Generally, these platforms are multi-threaded, distributed and highly complex. They need to be opti-

mized to perform well and be cost effective for all players. For optimization to succeed, it has to be preceded

by profiling and performance evaluation. In this paper we present techniques to profile such platforms using OpenADN as a run-

ning example. The effectiveness of using profiling data with the two factor full factorial design to analyze the effect of workloads

and other important factors on the performance, has been demonstrated. It is seen that the workload, of varying number of users

and hosts, does not have a significant impact on the performance. On the other hand, functions like host creation and polling have

significant impact on the execution time of the platform software, indicating potential gains from optimization.

Keywords: Cloud Management and Control, Cloud Service Provider, Multi-Cloud, Network Service Pro-
vider, OpenADN, Optimization, Performance Evaluation, Profiling.

Received: November 11, 2015 Revised: February 10, 2016 Accepted: February 11, 2016

1. INTRODUCTION

 The ability to deploy and manage resources
across multiple clouds is becoming increasingly
important for enterprises. This paper focuses on
enterprises that use virtual resources for their own
applications or who provide services to others. We
refer to both the types as application service pro-
viders (ASPs). To manage applications across
multi-cloud infrastructure these enterprises need
an appropriate control and management platform.

 Each individual Cloud Service Provider (CSP)

offers virtualized resources through diverse control

and management platforms, like OpenStack and

Amazon’s EC2. Similarly, Network Service Pro-

viders (NSPs) offer virtual network services, to

link up multiple clouds, through management and

control platforms like OpenDaylight. In such a sit-

uation enterprises obtaining resources from many

*Address correspondence to this author at the Department of Com-

puter Science and Engineering, Washington University in St Louis,

509 Bryan Hall, Campus Box 1045, 1 Brookings Drive, St Louis,

MO, USA; Tel: 314-825-0063; E-mail: jain@wustl.edu

CSPs and NSPs would have to deal with many dif-

ferent management and control platforms. This

would make their tasks difficult unless there is a

multi-cloud management platform to assist them.

The OpenADN platform (Open Application Deliv-

ery Network platform being developed at the Wash-

ington University in St Louis, MO, USA) does ex-

actly the same [1]. It is interposed between user en-

terprises and multiple public clouds and provides an

integrated view of all the resources to the ASPs so

that they can deploy and manage multi-cloud appli-

cations with ease and in best possible manner.

 Multi-cloud management and control platforms
need to be optimized to efficiently utilize re-
sources and minimize operational costs. Optimiza-
tion can be expensive and time consuming and
needs apriori understanding of a platform’s behav-
ior. Multithreading technique of software modular-
ization and concurrent execution used in these
platforms makes understanding their behavior dif-
ficult. One method of analyzing such a platform is
through profiling based performance evaluation.

Raj Jain

2 Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 Gupta et al.

The main contributions of this paper are twofold
1) To elaborate how behavior of such a platform
can be analyzed to obtain data for optimization,
while it is in operation i.e. obtaining and using vir-
tual resources from multiple clouds and 2) To
evolve a methodology to examine the usefulness
of the identified factors for optimization of the
platform and avoid unnecessary optimization ef-
forts.

 Section 2 gives some of the useful related re-
search. Section 3 gives an understanding of architec-
ture of the OpenADN platform that was profiled and
evaluated. In Section 4 we take up the performance
modeling of OpenADN, selection of profiling tech-
niques and the experimental technique used for per-
formance evaluation. Section 5 describes the profil-
ing methodology used, the virtual set up for con-
ducting the experiment and the actual profiling data
obtained. Section 6 discusses the experimental de-
sign and the results obtained. Section 7 summarizes
the paper and indicates future directions.

2. RELATED RESEARCH

 Profiling and optimization have been well doc-
umented as important constituents of software sys-
tems design and implementation. Use of these
techniques, to improve the performance of cloud
management systems and applications running on
cloud resources, is in the nascent stage. G. Ren et
al have in [2] presented an elaborate exposition of
using continuous profiling technique for improv-
ing performance of datacenter applications. The
authors argue that performance and utilization
characteristics are critically important, because
even minor performance improvements translate
into huge cost savings. Their contention is that the
traditional performance analysis is complicated for
datacenter applications and it is easier to monitor
them on live traffic. To be useful, the tools must
be non-intrusive and introduce minimal overhead.
The authors explain Google Wide Profiling
(GWP) as a continuous profiling methodology. It
samples usage across machines in multiple data
centers and collects data about events such as
stacks, lock contentions, heap profile and kernel
events. GWP profiles provide performance in-
sights for cloud applications.

 In [3] the authors propose MIMIR, a dynamic
profiling framework that can be used in conjunc-
tion with cache service such as memcached. The
profiler enables cache operators to dynamically

project the cost and performance impact from add-
ing or removing memory resources within a dis-
tributed in-memory cache. The authors claim 98%
accuracy and 2−5% overhead on request latency
and throughput. They conclude that online cache
profiling can be a practical tool for improving pro-
visioning of large caches. For system wide optimi-
zation Hung et al. in [4] assert that energy and
computational resources are most critical limita-
tions. For accurate energy and performance predic-
tion they suggest modeling energy-states of each
hardware component and time spent in each state.
For predicting resources accurately software exe-
cution needs to be tracked in actual environment.
According to them conventional tools do not fare
well with simulators so they have developed a
framework called the virtual performance analyzer
(VPA). This analyzer vests virtual machines with
profiling/tracing capabilities and effective tools to
analyze important hardware-software interactions
in the system.

 Palanisamy et al. have proposed Cura for provi-
sioning cost-effective MapReduce services in a
cloud [5]. It leverages MapReduce profiling to au-
tomatically create the best cluster configuration for
the jobs. They have reported upto 80% reduction
in cloud compute infrastructure cost with upto
65% reduction in job response times for Facebook-
like workloads.

 Profile-guided optimization has a huge poten-
tial to save costs for datacenters. In [6] authors ar-
gue that hardware features are inflexible limiting
the types of data that can be gathered. On the other
hand, instrumentation-based profiling can provide
more flexible and targeted information gathering.
In order for these techniques to be useful for data-
centers, overhead needs to be contained to less
than a few percent in terms of both throughput and
latency. The authors propose instant profiling, an
instrumentation sampling technique using dynamic
binary translation. In this technique normal execu-
tion is interleaved with instrumented execution.
They have achieved less than 6% slowdown and
3% computational overhead on average.

 While there are some good works that deal with
profiling and optimizing cloud based applications,
to the best of our knowledge no other work has
focused on behavioral analysis and optimization of
multi-cloud management and control platform.

Performance Evaluation of Multi-Cloud Management Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 3

3. ANATOMY OF A MULTI-CLOUD MAN-
AGEMENT PLATFORM

 A brief description of the architecture of Open-
ADN1 is provided in this section to help the read-
ers fully appreciate the discussion on the main
theme of profiling and optimization of such plat-
forms.

3.1. Components of OpenADN

 OpenADN is interposed between various single
cloud management systems, owned by different
CSPs, and the enterprise intending to use resources
on multiple public clouds. It has two types of exter-
nal interfaces. The first set of interfaces, also called
northbound interfaces, is for the application devel-
opers, application architects, and application de-
ployment administrators to define the application
resource requirements and deployment policies. The
second set of interfaces, or southbound interfaces,
allow OpenADN to interact with the management
and control systems of the cloud and network ser-
vice providers to manage their virtual resources.

 The key components of the OpenADN multi-
cloud management platform are shown in Fig. (1).
The global manager boots up the platform at appli-
cation run time and co-ordinates with other clouds
for acquisition of resources. The global controller is
part of the hybrid control plane of the OpenADN
that consists of a global controller and one or more
local controllers. After bootstrap, the global control-
ler takes over and launches one workflow manager
for each workflow. The workflow manager checks
for resources and launches workflow instances. One
local controller is instantiated for each data center
from which resources are leased. The local control-
ler launches a new thread for managing each new
virtual machine. The data plane is distributed in
which each node has a control agent through which
OpenADN control plane manages and controls the
data plane node.

 For multi-cloud deployments, the application
administrator has to configure appropriate policies
in the global controller. These policies include spec-
ifying how to distribute the application delivery
network deployment initially and during runtime. It
is important to decide when and where to instantiate

1 Open Application Delivery Network is a multi-cloud management

plat under development at Washington University in St Louis.

new instances and shutdown or move existing in-
stances to support change in the application context.
This massively distributed data plane structure
makes the performance evaluation of OpenADN
difficult and calls for specialized techniques that we
shall discuss in the following sections.

Global
Controller (GC)

Local Controller
(LC)

Local Controller
(LC)

VM-1 VM-N VM-1Virtual
Network

VM-N Virtual
Network

Enterprise Datacenter Cloud Datacenter

OpenStack EC2

Virtual WAN
Controller

ISP virtual
WAN

Global Manager

ISP Network Existing Modules

Proposed Modules

Application
Developer/Manager/User

Fig. (1). Key Components of OpenADN Platform.

3.2. Design and Coding Considerations

 Most of the control plane code has been imple-
mented using Python while the data plane has been
implemented with a mix of C and Python. The to-
tal size of the code base is currently about 10,000
lines of code. OpenADN has been designed as
modular software to provide code readability and
maintainability. Modularity also restricts inter-
module interference in case of failures. Multiple
operations are performed simultaneously to sup-
port multiple clouds, multiple users and multiple
services. Partitioning of OpenADN into concur-
rently executable modules leads to better utiliza-
tion of the hardware resources and ensures that the
system as a whole makes progress all the time [3,
7]. The platform modules and application services
are executed in separate processes. Application
services are designed as external modules that
connect to the platform through an external com-
munication interface. A failed application ser-
vice(s) can be handled by the platform without af-
fecting other services. The services may run on the
same or separate hosts. On the same host they use
inter-process communication (IPC) while on dif-
ferent hosts they communicate using the network
transport layer.

 In each host, platform modules may run within
the same address space (same process) but in sepa-

4 Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 Gupta et al.

rate threads to achieve concurrency. The ports han-
dling packet level services and message level ser-
vices run in separate processes because kernel net-
work stack has been used for packet level communi-
cation. These threads share the process heap, which
provides them a way to communicate with each oth-
er. However, in order to avoid fate-sharing com-
pletely, threads communicate inside the platform
process through messaging. Depending on the pro-
filing techniques used, these design considerations
could affect the outcome of profiling.

4. PERFORMANCE MODELING OF A
MULTI-CLOUD MANAGEMENT PLAT-
FORM

 This section defines the experimental modeling
that assists in gathering behavioral data, while the
platform is in operation, and carries out perfor-
mance evaluation decision for optimization. While
we have considered the OpenADN as a representa-
tive platform, the technique described here would
apply to any other platform.

4.1. Goal of the Study and System Definition

 The main goal of the study is to first methodi-
cally and scientifically locate areas of code in the
platform that might cause it to consume unduly
large amount of computing resources during boot-
strap and normal operation. Then we apply an ex-
perimental design technique to find whether any of
the located hotspots have significant impact on the
metric described in sub-section 4.3. The actual
setup of the experiments described in detail in sub-
section 4.4 would be used as the basis for carrying
out the collection of profiling data using tech-
niques mentioned in Section 5.

4.2. Services And Their Outcomes

OpenADN offers all the basic services expected of
such a platform, e.g., allocation of resources from
multiple clouds, distribution of applications, scal-
ing/de-scaling, and performance assurance of
workflows. Its uniqueness, however, lies in the
additional application and network layer services it
offers for highly distributed and multi-threaded
applications to run on multiple clouds [1]. These
services include:

1) Application layer services including message
and packet level services (sometimes called
middleboxes)

a) Message level services: webservers, data-
base servers, and web firewalls.

b) Packet level services: Intrusion detection
and intrusion prevention systems.

2) Network level services like packet forwarding
and routing

 The expected outcome is effective use of re-
sources, assurance of meeting quality of service and
dynamically ensuring efficient operation of the sys-
tem. However, if the system operates sub-optimally,
say under a computationally demanding application,
it results in higher cost, exactly opposite of what it
was supposed to achieve. Performance parameters
like latency may be met for some applications and
may not be met for others at all times. Communica-
tion among message level or packet level devices
may take unduly long time. These issues were kept
in mind for deciding metrics and parameters as dis-
cussed in the next sub-section.

4.3. Metrics, Factors and Parameters

 The main metric is the CPU time taken to exe-
cute the platform software during the complete
process of bootstrap and as the services start. Exe-
cution times for individual functions that consume
a large amount of time would be of interest. The
system parameters include: the type of virtual ma-
chines setup, storage capacities, intra- and inter-
cloud network bandwidth. The workload parame-
ters that affect the metric are the users’ requests
for services, types of services – message or packet
service and amount of resources available.

4.4 Evaluation Techniques And Experiment
Design

 Platforms managing resources across clouds
tend to be multi-threaded and distributed. Deter-
ministic multi-layered profiling technique can be
applied in such a situation for gathering data for
performance evaluation.

 The existing prototype of OpenADN was used
to set up experiment and take measurements. The
platform software was loaded and executed in the
virtual environment as described in the next sec-
tion. Experiments were conducted to observe ef-
fect of different workloads (involving varying
number of clients and hosts) and also various func-
tions of platform on CPU time required.

Performance Evaluation of Multi-Cloud Management Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 5

 The experiment was designed as a two factor full
factorial design without replications [8]. The reason
for choosing this design actually became obvious
while conducting profiling studies and collecting
data. We had a situation where two sets of parame-
ters, i.e., functions (host creation, polling and sleep)
and workloads (users and the number of hosts) were
affecting the CPU time. A careful control of these
two sets of parameters was required. We assumed
that the factors are categorical. A full factorial de-
sign with two factors functions (Aj) and workloads
(Bi) having i, j=3 levels each. The results are deter-
ministic in nature and, therefore, single replication
of each experiment was considered sufficient.

 The methods used and data collected are given
in Section 5. Experimental results and analysis are
discussed in Section 6.

5. GATHERING BEHAVIORAL DATA

5.1. Selection of profiling techniques and exper-
imental setup

 Complex software of a multi-cloud manage-
ment platform would always have regions of code
that consume disproportionate amount of compu-
ting, storage or network resources. This would
lead to leasing more resources than are necessary,
pushing up the deployment cost and increasing
latency. In [9], the authors have reported detailed
work in the area of understanding behavior of
software under execution and conclude that dy-
namic analysis is the only practical way to get ab-
solute timing of events. Three profiling methods
were found to be useful, to varying extent, for
multi-cloud management platforms: static, dynam-
ic and concurrent analysis [10]. Static analysis in-
volves model checking to explore loops and their
interactions exhaustively to ensure correctness
properties. Static-analysis techniques give assess-
ment of relative time and temporal ordering and do
not give absolute time [11]. Dynamic analysis
could be statistical where state of the program is
sampled to make a relative assessment of timing of
events or deterministic where events can be pre-
cisely timed by using instrumented code. Instru-
mentation systems can monitor coarse or fine-
grained behavior [5]. While the event timing with
deterministic profiling takes into account interac-
tion of threads, using concurrent analysis, a more
precise thread level examination can be made.

 The layered profiling model shown in Fig. (2)
helped us to progressively get more detailed in-
formation and zero in on the problem areas.

 Platform level profiling provided overall execu-
tion data for the complete platform. However, as
we shall see, while it gives useful information to
start with, it does not pinpoint the problems in the
code. Function level profiling enables us to meas-
ure the CPU times for execution of various func-
tions so that we could isolate the blocks those took
disproportionate time to execute. It does not, how-
ever, tell us the exact location of these time con-
suming operations. Some functions are called re-
peatedly in different modules. Thus, statement
level profiling was carried out to get the location
of the calls that were resulting in inappropriate be-
havior. Deterministic and concurrent techniques
were used to be able to measure absolute timing of
events for carrying out the experimental study.

Fig. (2). The Layered Profiling Model.

 The experimental setup consisted of one global
controller, resources from datacenters of two
clouds with one local controller each, a distributed
data plane with 7 hosts per local controller and a
‘fakenameserver’ (labeled as “Nameserver”), all
implemented on virtual machines. A client node
was also created to simulate different number of
users, as we shall see later in the experimental re-
sults. The setup is shown in Fig. (3).

Fig. (3). Virtual resources used for the experiments.

5.2. Collection and consolidation of data

1) Platform level analysis: To get a broad idea of
the efficiency of the platform code executing in a
virtualized environment, the built in timing utility

6 Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 Gupta et al.

of the operating system was used. Table 1 shows
the CPU times (in seconds) for user space func-
tions, kernel (system) functions, total of user and
kernel and the overall run time of the platform
across seven runs.

 Graphical representation of the data is given in
Fig. (4). Of the average total elapsed time of
49.269 seconds for which the platform software
was executed, the time spent in user functions and
kernel space was 1.3% and 1.77%, respectively.

Fig. (4). User, System and overall CPU time for OpenADN.

 This gives a sense that a large part of the time is
spent in activities such as waits and sleep times for
dealing with dependent asynchronous concurrent
processes. However, it cannot be yet said whether
this time relates to unavoidable delays and the sit-
uation can be improved through optimization. This
called for the next level of profiling, i.e., at mod-
ule/function level to see which of the modules are
more CPU intensive.

Table 1. Platform level execution data.

Run User Space System Calls User+System Run Time

1 0.872 1.248 2.120 43.068

2 0.948 1.796 2.744 54.675

3 0.864 1.064 1.928 40.464

4 0.940 1.256 2.196 46.650

5 1.016 1.040 2.056 35.936

6 2.500 3.096 5.596 64.050

7 2.004 2.910 4.914 60.041

Averages 1.306 1.773 3.079 49.269

% of

Run

Time

2.651 3.598 6.250

2) Function Level Profiling and Analysis: Python
library provides routines to collect behavioral data
at the function level. These routines provide a set
of statistics that describes how many times differ-
ent functions are called and how much time the
CPU is spending to execute various modules. The
statistical data collected needs to be processed
through some other conversion routintes like
‘pstats’ to make them amenable to analysis. A
large volume of data was produced of which a part
of output is shown in Fig. (5).

Legend: ncalls: the total number of calls, tottime: total time spent

in the given function (excluding sub functions) seconds, percall:

tottime divided by ncalls, cumtime: total time in this and all sub-

functions seconds, Percall: cumtime divided by primitive calls,

filename: data for each function

Fig. (5). Extract of function level profile.

 From the 2nd and 4th lines of Fig. (5), it can be
seen that the platform was executed for a total of
59.801 seconds. Out of this the polling function took
42.045 seconds. OpenADN uses the ZeroMQ™ poll-
ing function that provides communication between
modules on different virtual hosts.

 The communicating services have to poll the
sockets to check for the new incoming message. If a
large amount of time is taken then this may be an
indication that the entire process of platform execu-
tion may be slowing down. To know the exact loca-
tion of this time consuming operation and other such
operations statement level profiling was done.

3) Statement Level Profiling: As is often the case,
the reason for a particular module or functionality
taking a large amount of time could be pin-pointed
to some small part which may seem to be innocu-
ous on simple reading of the code. Some state-
ments could trigger a library function or call a spe-

Performance Evaluation of Multi-Cloud Management Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 7

cial method that may not be so obvious. A more
detailed line-by-line analysis of the program was
undertaken to find out which parts of the program
take more CPU time. Workload was varied to get
CPU times for various statements and identify the
functions that should be taken up for further analy-
sis. Fig. (6) shows a section of the profiling output
with a large proportion of sleep time (92%) and
also the time taken for creation of hosts.

Legend: Hits: Number of times that line was executed, Time: Total

execution time Per Hit: Average amount of execution time, %

Time: Percentage of time spent on that line relative to the total

amount of recorded time spent in the function, Line Contents: Ac-

tual source code.

Fig. (6). Extract of statement level profile showing large
sleep time 2000 users and 4 hosts

 Fig. (7) shows that, in this section of the profile,
the polling function takes 78.2% of the time. Leg-
ends of Fig. (6) are applicable.

Fig. (7). Extract of Statement Level Profile showing large
time taken by Poller 2000 users and 4 hosts.

 Fig. (8) shows 68.9% of the CPU time taken by
host creation and linking. Legends of Fig. (8) are
applicable.

5.3. Concurrency Profiling Data

 While the recursive function level profiling,
that includes timing of execution of sub-functions
and statement level profiling, reflects the effect of
execution of various threads, individual thread be-
havior may not be evident. To get a better under-
standing of the multi-threaded platform, thread
level profiling was carried out while the program
was in execution. A sample of concurrency profile
is given in Fig. (9). This aspect of profiling is a
part of future work.

 The internal polling operation at line 8 of the
output in Fig. (9) shows that this function was
called 65804 times after the global controller was
started (even before the local controllers were ac-
tivated) and a total of about 0.25 sec were spent in
this operation. This amounts to about 26% of the
time the thread spends in this function and the sub-
functions it calls.

6. EXPERIMENTAL RESULTS AND ANAL-
YSIS

 From all the profiling runs with different work-
loads it is observed that three types of activities are
consuming a large amount of time during the exe-
cution of the platform software:

1. Creation and linking of the host to the network

2. Polling of sockets for inter-service communica-
tion

3. Sleep function

 The percentage time consumed by these func-
tions varied with the workload. The workload was
varied by changing the number of users from 500
to 2000, each accessing from a list of web pages,
and also by creating different number of hosts per

Line # Hits Time Per hit %Time Line Contents

Fig. (8). Extract of profile for 2000 users and 8 hosts show-
ing 68.9% host creation and linking time.

8 Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 Gupta et al.

cloud varying from 4 to 16 for hosting the plat-
form modules as well as the application. It was
seen from the measurements taken that the execu-
tion times across functions varied more with the
number of hosts created than with the number of
users. It was, therefore, decided to carry out a de-
tailed performance analysis for a fixed number of
2000 users and the number of hosts varying from 4
to 16 in steps of 4.

name: function name, ncall: callcount of the function, tsub: time

spent in the function, ttot:time spend in the function and sub-

functions, tavg: ttot/ccnt

Fig. (9). Concurrency Profiling with 2000 users and 16 hosts.

 As noted in subsection 4.4, a two factor full
factorial design was used with the CPU time (the
observed function time rationalized with total
module execution time) being observed and the
factors as functions and workloads. Table 2 gives
the CPU times for these factors. The CPU time
required for execution of the three functions has
been rationalized with the total module times to
make them comparable across runs.

Table 2. CPU Time for functions and workloads.

Work-loads

Functions

Row Mean Row effects Host creation Polling Sleep

2000/4 hosts 0.3307 0.7865 0.9641 0.6938 -0.0063

2000/8 hosts 0.4316 0.7571 0.9325 0.7071 0.0070

2000/16 hosts 0.5186 0.7174 0.862 0.6993 -0.0007

Column Mean 0.4270 0.7537 0.9195 0.7001

 Column Effects -0.2731 0.0536 0.2195

6.1. Effect of the selected factors

 Table 2 data can be used for calculation of row
(workload) effects (βi) and column (functions) ef-

fects (αj). The grand mean (μ) is 0.7001. From the
table it is seen that the effect of host creation is
39% less than the average CPU time while that of
Polling and Sleep are 7.66% and 31.35% more.
The workload effects are small and within 1% of
average workload either way.

6.2. Explanation of Variation

 The total variation of CPU time (y) can be at-
tributed to the two factors: Functions and Work-
loads and to the experimental errors. Next we cal-
culate the sum of squares explained by these fac-
tors. These values are shown in the second column
of Table 3. From these values we calculate the var-
iations explained by various factors. The percent-
age variation explained by functions and work-
loads is 68.29% and 0.05%, respectively. The un-
explained variation (due to errors) comes out to be
31.68%. From the above we conclude the func-
tions selected are important for optimization re-
gardless of the workloads.

6.3. Analysis of Variance and Visual Results

 Now we have sufficient information to com-
plete the ANOVA table to test the significance of
the two factors as far as the CPU time is con-
cerned. The number of functions are a=3 and the
number of workloads are b=3.

 We obtain the respective mean squares by di-
viding the corresponding sum of squares by its de-
gree of freedom and compute F-ratio by finding
the ratio with mean square of errors.

Table 3. ANOVA table for functions and workloads.

Component

Sum of

Squares

% Varia-

tion

Degrees of

Freedom

Mean

square

F com-

puted F Table

y 4.8131 9

μ 4.4107 1

y-μ 0.4024 100 8

αj 0.2748 68.29 2 0.1374 8.6212 F0.90,2,4= 4.32

βi 0.0002 0.05 2 0.0001 0.0031 F0.90,2,4= 4.32

ei 0.1275 31.68 4 0.0159

 From Table 3 we observe that the workloads
had comparable runtimes. This ensured that effect
of the functions selected is not overshadowed by

Performance Evaluation of Multi-Cloud Management Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 9

the differences in the workload run times. The F-
ratio calculated for Functions is greater than that
obtained from the table (at 90% confidence level)
so they are significant for our study. F Level of
workload is less so they are not significant.

 Visual examination of residuals and responses
can be seen from the graphs below (Fig. 10). In
order to check the homogeneity of the error vari-
ance we obtain errors (Table 4) and plot them
against predicted response.

Table 4. The estimated y and the residuals.

ŷij=μ+αj+βi ei=yij- ŷij

0.4207 0.7474 0.9132 -0.0900 0.0391 0.0509

0.4340 0.7607 0.9265 -0.0024 -0.0036 0.0060

0.4263 0.7530 0.9188 0.0923 -0.0356 -0.0568

 The residuals and responses are given in Table
4 and the corresponding graph in Fig. (10a). The
residuals are scattered uniformly with zero mean
and do not show a trend. A normal quantile-
quantile plot was plotted from the data in Table 7b
and is shown in Fig. (10b). The plot is approxi-
mately linear suggesting normal distribution of
residuals.

6.4 Confidence Intervals for the effects

 To check the sanity of our results we took the
analysis further by calculating standard deviations
(SDs) and 90% confidence intervals (CIs) for the

effects related to functions and workloads (Table
5). The ‘t’ value used for the calculation of CIs is
for 90% confidence interval and 4 degrees of free-
dom (the degrees of freedom for the errors).

Table 5. Calculation of CI of effects.

MSE =0.0159 se= 0.1261

SD of grand mean sμ=0.0420

SD of αj sαj 0.0594

SD of βis sβi 0.0594

90% confidence interval for α 90% confidence interval for β

(0.3003, 0.5537) (0.5670, 0.8205)

(0.6269, 0.8804) (0.5803, 0.8338)

(0.7928, 1.0463) (0.5726, 0.8261)

 It can be seen that CIs of the functions are all
significant. Also the means of α do not lie in the
CI of each other so they are significantly different
from each other. This implies that optimization
with respect to these three functions should result
in improvement in performance of the platform.
The workloads on the other hand have their means
in the CI of the others so they are not significantly
different from each other.

7. CONCLUSIONS

 In this paper, we presented the performance
evaluation of OpenADN, a complex multi-
threaded and distributed multi-cloud management
platform in operation. Behavior of the platform is

(a) (b)

Fig. (10). a) Residual vs. Predicted Response, b) Quantile-Quantile Plot.

10 Recent Advances in Communications and Networking Technology, 2016, Vol. 5, No. 1 Gupta et al.

studied as it starts operating, obtains virtual re-
sources from multiple clouds, allocates the re-
sources to processes and then continues normal
operation. The profiling data obtained through de-
terministic methods coupled with the two-factor
full-factorial design helped us to determine wheth-
er the factors selected are significant and should be
used for further optimization of the platform. The
factors viz. Functions (host creation time, polling
and sleep times) and Workloads (2000 users with
4, 8 and 16 hosts) were selected based on the vari-
ous levels of profiling data collected. Workloads,
involving varying number of users and hosts, did
not have a significant impact on the performance
and their effect was low and indistinguishable. On
the other hand, after a detailed analysis we have
reached the conclusion that all the functions, iden-
tified through profiling, have a significant effect
on the CPU time of the platform. The CPU time in
turn is an indicator of the performance of the plat-
form. These functions can, therefore, be consid-
ered for optimization to achieve improved perfor-
mance of the platform. It is, therefore, concluded
that behavioral analysis through layered profiling
and full factorial analysis of the data can reveal
vital information about for optimization of multi-
cloud management platforms.

CONFLICT OF INTEREST

 The authors confirm that this article content has
no conflict of interest.

ACKNOWLEDGEMENTS

 This work has been supported under the grant
ID NPRP 6 - 901 - 2 - 370 for the project entitled

"Middleware Architecture for Cloud Based Ser-
vices Using Software Defined Networking
(SDN)", which is funded by the Qatar National
Research Fund (QNRF). The statements made
herein are solely the responsibility of the authors.

REFERENCES

[1] S. Paul, R. Jain, J. Pan, J. Iyer, D. Oran, “OpenADN: A Case for Open
Application Delivery Networking,” 22nd International Conference on
Computer Communications and Networks (ICCCN), pp. 1-7, 2013

[2] Gang Ren Eric Tune Tipp Moseley Yixin Shi Silvius Rus Robert
Hundt, “Google-Wide Profiling: A Continuous Profiling Infrastructure
For Data Centers,” IEEE Micro, Volume 30, Issue 4, pp 65-90, 2010

[3] T Saemundsson, H Bjornsson, Gregory Chockler, “Dynamic
Performance Profiling of Cloud Caches,” ACM Symposium on Cloud
Computing, pp. 1-14, 2014

[4] S-H. Hung et al.“System-Wide Profiling and Optimization with
Virtual Machines,” 17th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 395-400, 2012

[5] B. Palanisamy, A. Singh, and L. Liu, “Cost-effective resource
provisioning for mapreduce in a cloud,” Parallel and Distributed
Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[6] H. K. Cho, T. Moseley, R. Hank, D. Bruening, S. Mahlke, “Instant
Profiling: Instrumentation Sampling for Profiling Datacenter
Applications,” IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 1-10, 2013

[7] Subharthi Paul, Raj Jain, Mohammed Samaka, Jianli Pan, "Application
Delivery in Multi-Cloud Environments using Software Defined
Networking, ” Computer Networks Special Issue on cloud networking
and communications, pp. 166-186, Feb 2014

[8] R. Jain, “The Art of Computer Systems Performance Analysis,”
Wiley, 1991

[9] G. D. Waddington, N. Roy and D. C. Schmidt, “Dynamic Analysis
and Profiling of Multi-threaded Systems,” IGI Global 2009.

[10] L. Gupta, R. Jain and M. Samaka, “Dynamic Analysis of Application
Delivery Network for Leveraging Software Defined Infrastructures,”
Proceedings of IEEE International Workshop on Software Defined
Systems, pp. 305-310, 2015

[11] J. Mars and R. Hundt, “Scenario Based Optimization: A Framework
for Statically Enabling Online Optimizations, ” Proc. 2009 Int’l Symp.
Code Generation and Optimization (CGO 09), IEEE CS Press, pp.
169-179, 2009

[12] “Concurrency Profiling,” 2013 http://msdn.microsoft.com/en-
us/library/dd264994.aspx

DISCLAIMER: The above article has been published in Epub (ahead of print) on the basis of the materials provided by the author. The Editorial Department

reserves the right to make minor modifications for further improvement of the manuscript.

