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Abstract: Most global enterprises and application service providers need to use resources from multiple 

clouds managed by different cloud service providers, located throughout the world. The ability to manage 

these geographically distributed resources requires use of specialized management and control platforms. Such 

platforms allow enterprises to deploy and manage their applications across remote clouds that meet their ob-

jectives. Generally, these platforms are multi-threaded, distributed and highly complex. They need to be opti-

mized to perform well and be cost effective for all players. For optimization to succeed, it has to be preceded 

by profiling and performance evaluation. In this paper we present techniques to profile such platforms using OpenADN as a run-

ning example. The effectiveness of using profiling data with the two factor full factorial design to analyze the effect of workloads 

and other important factors on the performance, has been demonstrated. It is seen that the workload, of varying number of users 

and hosts, does not have a significant impact on the performance. On the other hand, functions like host creation and polling have 

significant impact on the execution time of the platform software, indicating potential gains from optimization. 
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1. INTRODUCTION 

 The ability to deploy and manage resources 
across multiple clouds is becoming increasingly 
important for enterprises. This paper focuses on 
enterprises that use virtual resources for their own 
applications or who provide services to others. We 
refer to both the types as application service pro-
viders (ASPs). To manage applications across 
multi-cloud infrastructure these enterprises need 
an appropriate control and management platform. 

 Each individual Cloud Service Provider (CSP) 

offers virtualized resources through diverse control 

and management platforms, like OpenStack and 

Amazon’s EC2. Similarly, Network Service Pro-

viders (NSPs) offer virtual network services, to 

link up multiple clouds, through management and 

control platforms like OpenDaylight. In such a sit-

uation enterprises obtaining resources from many 
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CSPs and NSPs would have to deal with many dif-

ferent management and control platforms. This 

would make their tasks difficult unless there is a 

multi-cloud management platform to assist them. 

The OpenADN platform (Open Application Deliv-

ery Network platform being developed at the Wash-

ington University in St Louis, MO, USA) does ex-

actly the same [1]. It is interposed between user en-

terprises and multiple public clouds and provides an 

integrated view of all the resources to the ASPs so 

that they can deploy and manage multi-cloud appli-

cations with ease and in best possible manner. 

 Multi-cloud management and control platforms 
need to be optimized to efficiently utilize re-
sources and minimize operational costs. Optimiza-
tion can be expensive and time consuming and 
needs apriori understanding of a platform’s behav-
ior. Multithreading technique of software modular-
ization and concurrent execution used in these 
platforms makes understanding their behavior dif-
ficult. One method of analyzing such a platform is 
through profiling based performance evaluation. 
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The main contributions of this paper are twofold 
1) To elaborate how behavior of such a platform 
can be analyzed to obtain data for optimization, 
while it is in operation i.e. obtaining and using vir-
tual resources from multiple clouds and 2) To 
evolve a methodology to examine the usefulness 
of the identified factors for optimization of the 
platform and avoid unnecessary optimization ef-
forts.  

 Section 2 gives some of the useful related re-
search. Section 3 gives an understanding of architec-
ture of the OpenADN platform that was profiled and 
evaluated. In Section 4 we take up the performance 
modeling of OpenADN, selection of profiling tech-
niques and the experimental technique used for per-
formance evaluation. Section 5 describes the profil-
ing methodology used, the virtual set up for con-
ducting the experiment and the actual profiling data 
obtained. Section 6 discusses the experimental de-
sign and the results obtained. Section 7 summarizes 
the paper and indicates future directions. 

2. RELATED RESEARCH 

 Profiling and optimization have been well doc-
umented as important constituents of software sys-
tems design and implementation. Use of these 
techniques, to improve the performance of cloud 
management systems and applications running on 
cloud resources, is in the nascent stage. G. Ren et 
al have in [2] presented an elaborate exposition of 
using continuous profiling technique for improv-
ing performance of datacenter applications. The 
authors argue that performance and utilization 
characteristics are critically important, because 
even minor performance improvements translate 
into huge cost savings. Their contention is that the 
traditional performance analysis is complicated for 
datacenter applications and it is easier to monitor 
them on live traffic. To be useful, the tools must 
be non-intrusive and introduce minimal overhead. 
The authors explain Google Wide Profiling 
(GWP) as a continuous profiling methodology. It 
samples usage across machines in multiple data 
centers and collects data about events such as 
stacks, lock contentions, heap profile and kernel 
events. GWP profiles provide performance in-
sights for cloud applications.  

 In [3] the authors propose MIMIR, a dynamic 
profiling framework that can be used in conjunc-
tion with cache service such as memcached. The 
profiler enables cache operators to dynamically 

project the cost and performance impact from add-
ing or removing memory resources within a dis-
tributed in-memory cache. The authors claim 98% 
accuracy and 2−5% overhead on request latency 
and throughput. They conclude that online cache 
profiling can be a practical tool for improving pro-
visioning of large caches. For system wide optimi-
zation Hung et al. in [4] assert that energy and 
computational resources are most critical limita-
tions. For accurate energy and performance predic-
tion they suggest modeling energy-states of each 
hardware component and time spent in each state. 
For predicting resources accurately software exe-
cution needs to be tracked in actual environment. 
According to them conventional tools do not fare 
well with simulators so they have developed a 
framework called the virtual performance analyzer 
(VPA). This analyzer vests virtual machines with 
profiling/tracing capabilities and effective tools to 
analyze important hardware-software interactions 
in the system.  

 Palanisamy et al. have proposed Cura for provi-
sioning cost-effective MapReduce services in a 
cloud [5]. It leverages MapReduce profiling to au-
tomatically create the best cluster configuration for 
the jobs. They have reported upto 80% reduction 
in cloud compute infrastructure cost with upto 
65% reduction in job response times for Facebook-
like workloads. 

 Profile-guided optimization has a huge poten-
tial to save costs for datacenters. In [6] authors ar-
gue that hardware features are inflexible limiting 
the types of data that can be gathered. On the other 
hand, instrumentation-based profiling can provide 
more flexible and targeted information gathering. 
In order for these techniques to be useful for data-
centers, overhead needs to be contained to less 
than a few percent in terms of both throughput and 
latency. The authors propose instant profiling, an 
instrumentation sampling technique using dynamic 
binary translation. In this technique normal execu-
tion is interleaved with instrumented execution. 
They have achieved less than 6% slowdown and 
3% computational overhead on average. 

 While there are some good works that deal with 
profiling and optimizing cloud based applications, 
to the best of our knowledge no other work has 
focused on behavioral analysis and optimization of 
multi-cloud management and control platform. 
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3. ANATOMY OF A MULTI-CLOUD MAN-
AGEMENT PLATFORM 

 A brief description of the architecture of Open-
ADN1 is provided in this section to help the read-
ers fully appreciate the discussion on the main 
theme of profiling and optimization of such plat-
forms. 

3.1. Components of OpenADN 

 OpenADN is interposed between various single 
cloud management systems, owned by different 
CSPs, and the enterprise intending to use resources 
on multiple public clouds. It has two types of exter-
nal interfaces. The first set of interfaces, also called 
northbound interfaces, is for the application devel-
opers, application architects, and application de-
ployment administrators to define the application 
resource requirements and deployment policies. The 
second set of interfaces, or southbound interfaces, 
allow OpenADN to interact with the management 
and control systems of the cloud and network ser-
vice providers to manage their virtual resources.  

 The key components of the OpenADN multi-
cloud management platform are shown in Fig. (1). 
The global manager boots up the platform at appli-
cation run time and co-ordinates with other clouds 
for acquisition of resources. The global controller is 
part of the hybrid control plane of the OpenADN 
that consists of a global controller and one or more 
local controllers. After bootstrap, the global control-
ler takes over and launches one workflow manager 
for each workflow. The workflow manager checks 
for resources and launches workflow instances. One 
local controller is instantiated for each data center 
from which resources are leased. The local control-
ler launches a new thread for managing each new 
virtual machine. The data plane is distributed in 
which each node has a control agent through which 
OpenADN control plane manages and controls the 
data plane node. 

 For multi-cloud deployments, the application 
administrator has to configure appropriate policies 
in the global controller. These policies include spec-
ifying how to distribute the application delivery 
network deployment initially and during runtime. It 
is important to decide when and where to instantiate 

                                                      

1 Open Application Delivery Network is a multi-cloud management 

plat under development at Washington University in St Louis. 

new instances and shutdown or move existing in-
stances to support change in the application context. 
This massively distributed data plane structure 
makes the performance evaluation of OpenADN 
difficult and calls for specialized techniques that we 
shall discuss in the following sections. 
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Fig. (1). Key Components of OpenADN Platform. 

3.2. Design and Coding Considerations 

 Most of the control plane code has been imple-
mented using Python while the data plane has been 
implemented with a mix of C and Python. The to-
tal size of the code base is currently about 10,000 
lines of code. OpenADN has been designed as 
modular software to provide code readability and 
maintainability. Modularity also restricts inter-
module interference in case of failures. Multiple 
operations are performed simultaneously to sup-
port multiple clouds, multiple users and multiple 
services. Partitioning of OpenADN into concur-
rently executable modules leads to better utiliza-
tion of the hardware resources and ensures that the 
system as a whole makes progress all the time [3, 
7]. The platform modules and application services 
are executed in separate processes. Application 
services are designed as external modules that 
connect to the platform through an external com-
munication interface. A failed application ser-
vice(s) can be handled by the platform without af-
fecting other services. The services may run on the 
same or separate hosts. On the same host they use 
inter-process communication (IPC) while on dif-
ferent hosts they communicate using the network 
transport layer.  

 In each host, platform modules may run within 
the same address space (same process) but in sepa-
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rate threads to achieve concurrency. The ports han-
dling packet level services and message level ser-
vices run in separate processes because kernel net-
work stack has been used for packet level communi-
cation. These threads share the process heap, which 
provides them a way to communicate with each oth-
er. However, in order to avoid fate-sharing com-
pletely, threads communicate inside the platform 
process through messaging. Depending on the pro-
filing techniques used, these design considerations 
could affect the outcome of profiling. 

4. PERFORMANCE MODELING OF A 
MULTI-CLOUD MANAGEMENT PLAT-
FORM 

 This section defines the experimental modeling 
that assists in gathering behavioral data, while the 
platform is in operation, and carries out perfor-
mance evaluation decision for optimization. While 
we have considered the OpenADN as a representa-
tive platform, the technique described here would 
apply to any other platform. 

4.1. Goal of the Study and System Definition 

 The main goal of the study is to first methodi-
cally and scientifically locate areas of code in the 
platform that might cause it to consume unduly 
large amount of computing resources during boot-
strap and normal operation. Then we apply an ex-
perimental design technique to find whether any of 
the located hotspots have significant impact on the 
metric described in sub-section 4.3. The actual 
setup of the experiments described in detail in sub-
section 4.4 would be used as the basis for carrying 
out the collection of profiling data using tech-
niques mentioned in Section 5.  

4.2. Services And Their Outcomes  

OpenADN offers all the basic services expected of 
such a platform, e.g., allocation of resources from 
multiple clouds, distribution of applications, scal-
ing/de-scaling, and performance assurance of 
workflows. Its uniqueness, however, lies in the 
additional application and network layer services it 
offers for highly distributed and multi-threaded 
applications to run on multiple clouds [1]. These 
services include: 

1) Application layer services including message 
and packet level services (sometimes called 
middleboxes) 

a) Message level services: webservers, data-
base servers, and web firewalls. 

b) Packet level services: Intrusion detection 
and intrusion prevention systems. 

2) Network level services like packet forwarding 
and routing 

 The expected outcome is effective use of re-
sources, assurance of meeting quality of service and 
dynamically ensuring efficient operation of the sys-
tem. However, if the system operates sub-optimally, 
say under a computationally demanding application, 
it results in higher cost, exactly opposite of what it 
was supposed to achieve. Performance parameters 
like latency may be met for some applications and 
may not be met for others at all times. Communica-
tion among message level or packet level devices 
may take unduly long time. These issues were kept 
in mind for deciding metrics and parameters as dis-
cussed in the next sub-section.  

4.3. Metrics, Factors and Parameters 

 The main metric is the CPU time taken to exe-
cute the platform software during the complete 
process of bootstrap and as the services start. Exe-
cution times for individual functions that consume 
a large amount of time would be of interest. The 
system parameters include: the type of virtual ma-
chines setup, storage capacities, intra- and inter-
cloud network bandwidth. The workload parame-
ters that affect the metric are the users’ requests 
for services, types of services – message or packet 
service and amount of resources available. 

4.4 Evaluation Techniques And Experiment 
Design 

 Platforms managing resources across clouds 
tend to be multi-threaded and distributed. Deter-
ministic multi-layered profiling technique can be 
applied in such a situation for gathering data for 
performance evaluation.  

 The existing prototype of OpenADN was used 
to set up experiment and take measurements. The 
platform software was loaded and executed in the 
virtual environment as described in the next sec-
tion. Experiments were conducted to observe ef-
fect of different workloads (involving varying 
number of clients and hosts) and also various func-
tions of platform on CPU time required.  
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 The experiment was designed as a two factor full 
factorial design without replications [8]. The reason 
for choosing this design actually became obvious 
while conducting profiling studies and collecting 
data. We had a situation where two sets of parame-
ters, i.e., functions (host creation, polling and sleep) 
and workloads (users and the number of hosts) were 
affecting the CPU time. A careful control of these 
two sets of parameters was required. We assumed 
that the factors are categorical. A full factorial de-
sign with two factors functions (Aj) and workloads 
(Bi) having i, j=3 levels each. The results are deter-
ministic in nature and, therefore, single replication 
of each experiment was considered sufficient. 

 The methods used and data collected are given 
in Section 5. Experimental results and analysis are 
discussed in Section 6. 

5. GATHERING BEHAVIORAL DATA  

5.1. Selection of profiling techniques and exper-
imental setup 

 Complex software of a multi-cloud manage-
ment platform would always have regions of code 
that consume disproportionate amount of compu-
ting, storage or network resources. This would 
lead to leasing more resources than are necessary, 
pushing up the deployment cost and increasing 
latency. In [9], the authors have reported detailed 
work in the area of understanding behavior of 
software under execution and conclude that dy-
namic analysis is the only practical way to get ab-
solute timing of events. Three profiling methods 
were found to be useful, to varying extent, for 
multi-cloud management platforms: static, dynam-
ic and concurrent analysis [10]. Static analysis in-
volves model checking to explore loops and their 
interactions exhaustively to ensure correctness 
properties. Static-analysis techniques give assess-
ment of relative time and temporal ordering and do 
not give absolute time [11]. Dynamic analysis 
could be statistical where state of the program is 
sampled to make a relative assessment of timing of 
events or deterministic where events can be pre-
cisely timed by using instrumented code. Instru-
mentation systems can monitor coarse or fine-
grained behavior [5]. While the event timing with 
deterministic profiling takes into account interac-
tion of threads, using concurrent analysis, a more 
precise thread level examination can be made. 

 The layered profiling model shown in Fig. (2) 
helped us to progressively get more detailed in-
formation and zero in on the problem areas. 

 Platform level profiling provided overall execu-
tion data for the complete platform. However, as 
we shall see, while it gives useful information to 
start with, it does not pinpoint the problems in the 
code. Function level profiling enables us to meas-
ure the CPU times for execution of various func-
tions so that we could isolate the blocks those took 
disproportionate time to execute. It does not, how-
ever, tell us the exact location of these time con-
suming operations. Some functions are called re-
peatedly in different modules. Thus, statement 
level profiling was carried out to get the location 
of the calls that were resulting in inappropriate be-
havior. Deterministic and concurrent techniques 
were used to be able to measure absolute timing of 
events for carrying out the experimental study. 

 

Fig. (2). The Layered Profiling Model. 

 The experimental setup consisted of one global 
controller, resources from datacenters of two 
clouds with one local controller each, a distributed 
data plane with 7 hosts per local controller and a 
‘fakenameserver’ (labeled as “Nameserver”), all 
implemented on virtual machines. A client node 
was also created to simulate different number of 
users, as we shall see later in the experimental re-
sults. The setup is shown in Fig. (3). 

 
Fig. (3). Virtual resources used for the experiments. 

5.2. Collection and consolidation of data 

1) Platform level analysis: To get a broad idea of 
the efficiency of the platform code executing in a 
virtualized environment, the built in timing utility 
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of the operating system was used. Table 1 shows 
the CPU times (in seconds) for user space func-
tions, kernel (system) functions, total of user and 
kernel and the overall run time of the platform 
across seven runs. 

 Graphical representation of the data is given in 
Fig. (4). Of the average total elapsed time of 
49.269 seconds for which the platform software 
was executed, the time spent in user functions and 
kernel space was 1.3% and 1.77%, respectively.  

 
Fig. (4). User, System and overall CPU time for OpenADN. 

 This gives a sense that a large part of the time is 
spent in activities such as waits and sleep times for 
dealing with dependent asynchronous concurrent 
processes. However, it cannot be yet said whether 
this time relates to unavoidable delays and the sit-
uation can be improved through optimization. This 
called for the next level of profiling, i.e., at mod-
ule/function level to see which of the modules are 
more CPU intensive. 

Table 1. Platform level execution data. 

Run User Space System Calls User+System Run Time 

1 0.872 1.248 2.120 43.068 

2 0.948 1.796 2.744 54.675 

3 0.864 1.064 1.928 40.464 

4 0.940 1.256 2.196 46.650 

5 1.016 1.040 2.056 35.936 

6 2.500 3.096 5.596 64.050 

7 2.004 2.910 4.914 60.041 

Averages 1.306 1.773 3.079 49.269 

% of 

Run 

Time 

2.651 3.598 6.250   

2) Function Level Profiling and Analysis: Python 
library provides routines to collect behavioral data 
at the function level. These routines provide a set 
of statistics that describes how many times differ-
ent functions are called and how much time the 
CPU is spending to execute various modules. The 
statistical data collected needs to be processed 
through some other conversion routintes like 
‘pstats’ to make them amenable to analysis. A 
large volume of data was produced of which a part 
of output is shown in Fig. (5). 

 

Legend: ncalls: the total number of calls, tottime: total time spent 

in the given function (excluding sub functions) seconds, percall: 

tottime divided by ncalls, cumtime: total time in this and all sub-

functions seconds, Percall: cumtime divided by primitive calls, 

filename: data for each function 

Fig. (5). Extract of function level profile. 

 From the 2nd and 4th lines of Fig. (5), it can be 
seen that the platform was executed for a total of 
59.801 seconds. Out of this the polling function took 
42.045 seconds. OpenADN uses the ZeroMQ™ poll-
ing function that provides communication between 
modules on different virtual hosts. 

 The communicating services have to poll the 
sockets to check for the new incoming message. If a 
large amount of time is taken then this may be an 
indication that the entire process of platform execu-
tion may be slowing down. To know the exact loca-
tion of this time consuming operation and other such 
operations statement level profiling was done. 

3) Statement Level Profiling: As is often the case, 
the reason for a particular module or functionality 
taking a large amount of time could be pin-pointed 
to some small part which may seem to be innocu-
ous on simple reading of the code. Some state-
ments could trigger a library function or call a spe-
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cial method that may not be so obvious. A more 
detailed line-by-line analysis of the program was 
undertaken to find out which parts of the program 
take more CPU time. Workload was varied to get 
CPU times for various statements and identify the 
functions that should be taken up for further analy-
sis. Fig. (6) shows a section of the profiling output 
with a large proportion of sleep time (92%) and 
also the time taken for creation of hosts. 

 

Legend: Hits: Number of times that line was executed, Time: Total 

execution time Per Hit: Average amount of execution time, % 

Time: Percentage of time spent on that line relative to the total 

amount of recorded time spent in the function, Line Contents: Ac-

tual source code. 

Fig. (6). Extract of statement level profile showing large 
sleep time 2000 users and 4 hosts 

 Fig. (7) shows that, in this section of the profile, 
the polling function takes 78.2% of the time. Leg-
ends of Fig. (6) are applicable. 

 
Fig. (7). Extract of Statement Level Profile showing large 
time taken by Poller 2000 users and 4 hosts. 

 Fig. (8) shows 68.9% of the CPU time taken by 
host creation and linking. Legends of Fig. (8) are 
applicable. 

5.3. Concurrency Profiling Data 

 While the recursive function level profiling, 
that includes timing of execution of sub-functions 
and statement level profiling, reflects the effect of 
execution of various threads, individual thread be-
havior may not be evident. To get a better under-
standing of the multi-threaded platform, thread 
level profiling was carried out while the program 
was in execution. A sample of concurrency profile 
is given in Fig. (9). This aspect of profiling is a 
part of future work. 

 The internal polling operation at line 8 of the 
output in Fig. (9) shows that this function was 
called 65804 times after the global controller was 
started (even before the local controllers were ac-
tivated) and a total of about 0.25 sec were spent in 
this operation. This amounts to about 26% of the 
time the thread spends in this function and the sub-
functions it calls. 

6. EXPERIMENTAL RESULTS AND ANAL-
YSIS 

 From all the profiling runs with different work-
loads it is observed that three types of activities are 
consuming a large amount of time during the exe-
cution of the platform software: 

1. Creation and linking of the host to the network 

2. Polling of sockets for inter-service communica-
tion 

3. Sleep function 

 The percentage time consumed by these func-
tions varied with the workload. The workload was 
varied by changing the number of users from 500 
to 2000, each accessing from a list of web pages, 
and also by creating different number of hosts per 

Line #       Hits              Time   Per hit    %Time   Line Contents

 

Fig. (8). Extract of profile for 2000 users and 8 hosts show-
ing 68.9% host creation and linking time. 
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cloud varying from 4 to 16 for hosting the plat-
form modules as well as the application. It was 
seen from the measurements taken that the execu-
tion times across functions varied more with the 
number of hosts created than with the number of 
users. It was, therefore, decided to carry out a de-
tailed performance analysis for a fixed number of 
2000 users and the number of hosts varying from 4 
to 16 in steps of 4. 

 
name: function name, ncall: callcount of the function, tsub: time 

spent in the function, ttot:time spend in the function and sub-

functions, tavg: ttot/ccnt 

Fig. (9). Concurrency Profiling with 2000 users and 16 hosts. 

 As noted in subsection 4.4, a two factor full 
factorial design was used with the CPU time (the 
observed function time rationalized with total 
module execution time) being observed and the 
factors as functions and workloads. Table 2 gives 
the CPU times for these factors. The CPU time 
required for execution of the three functions has 
been rationalized with the total module times to 
make them comparable across runs. 

Table 2. CPU Time for functions and workloads. 

Work-loads 

Functions 

Row Mean Row effects Host creation Polling Sleep 

2000/4 hosts 0.3307 0.7865 0.9641 0.6938 -0.0063 

2000/8 hosts 0.4316 0.7571 0.9325 0.7071 0.0070 

2000/16 hosts 0.5186 0.7174 0.862 0.6993 -0.0007 

Column Mean 0.4270 0.7537 0.9195 0.7001 

 Column Effects -0.2731 0.0536 0.2195 

  

6.1. Effect of the selected factors 

 Table 2 data can be used for calculation of row 
(workload) effects (βi) and column (functions) ef-

fects (αj). The grand mean (μ) is 0.7001. From the 
table it is seen that the effect of host creation is 
39% less than the average CPU time while that of 
Polling and Sleep are 7.66% and 31.35% more. 
The workload effects are small and within 1% of 
average workload either way. 

6.2. Explanation of Variation 

 The total variation of CPU time (y) can be at-
tributed to the two factors: Functions and Work-
loads and to the experimental errors. Next we cal-
culate the sum of squares explained by these fac-
tors. These values are shown in the second column 
of Table 3. From these values we calculate the var-
iations explained by various factors. The percent-
age variation explained by functions and work-
loads is 68.29% and 0.05%, respectively. The un-
explained variation (due to errors) comes out to be 
31.68%. From the above we conclude the func-
tions selected are important for optimization re-
gardless of the workloads. 

6.3. Analysis of Variance and Visual Results 

 Now we have sufficient information to com-
plete the ANOVA table to test the significance of 
the two factors as far as the CPU time is con-
cerned. The number of functions are a=3 and the 
number of workloads are b=3.  

 We obtain the respective mean squares by di-
viding the corresponding sum of squares by its de-
gree of freedom and compute F-ratio by finding 
the ratio with mean square of errors. 

Table 3. ANOVA table for functions and workloads. 

Component 

Sum of 

Squares 

% Varia-

tion 

Degrees of 

Freedom 

Mean 

square 

F com-

puted F Table 

y 4.8131   9       

μ 4.4107   1       

y-μ 0.4024 100 8       

αj 0.2748 68.29 2 0.1374 8.6212  F0.90,2,4= 4.32 

βi 0.0002 0.05 2 0.0001 0.0031  F0.90,2,4= 4.32 

ei 0.1275 31.68 4 0.0159     

 

 From Table 3 we observe that the workloads 
had comparable runtimes. This ensured that effect 
of the functions selected is not overshadowed by 
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the differences in the workload run times. The F-
ratio calculated for Functions is greater than that 
obtained from the table (at 90% confidence level) 
so they are significant for our study. F Level of 
workload is less so they are not significant. 

 Visual examination of residuals and responses 
can be seen from the graphs below (Fig. 10). In 
order to check the homogeneity of the error vari-
ance we obtain errors (Table 4) and plot them 
against predicted response. 

Table 4. The estimated y and the residuals. 

ŷij=μ+αj+βi ei=yij- ŷij 

0.4207 0.7474 0.9132 -0.0900 0.0391 0.0509 

0.4340 0.7607 0.9265 -0.0024 -0.0036 0.0060 

0.4263 0.7530 0.9188 0.0923 -0.0356 -0.0568 

 

 The residuals and responses are given in Table 
4 and the corresponding graph in Fig. (10a). The 
residuals are scattered uniformly with zero mean 
and do not show a trend. A normal quantile-
quantile plot was plotted from the data in Table 7b 
and is shown in Fig. (10b). The plot is approxi-
mately linear suggesting normal distribution of 
residuals. 

6.4 Confidence Intervals for the effects 

 To check the sanity of our results we took the 
analysis further by calculating standard deviations 
(SDs) and 90% confidence intervals (CIs) for the 

effects related to functions and workloads (Table 
5). The ‘t’ value used for the calculation of CIs is 
for 90% confidence interval and 4 degrees of free-
dom (the degrees of freedom for the errors). 

Table 5. Calculation of CI of effects. 

MSE =0.0159 se= 0.1261 

SD of grand mean sμ=0.0420 

SD of αj sαj 0.0594 

SD of βis sβi 0.0594 

90% confidence interval for α 90% confidence interval for β 

(0.3003, 0.5537) (0.5670, 0.8205) 

(0.6269, 0.8804) (0.5803, 0.8338) 

(0.7928, 1.0463) (0.5726, 0.8261) 

 

 It can be seen that CIs of the functions are all 
significant. Also the means of α do not lie in the 
CI of each other so they are significantly different 
from each other. This implies that optimization 
with respect to these three functions should result 
in improvement in performance of the platform. 
The workloads on the other hand have their means 
in the CI of the others so they are not significantly 
different from each other.  

7. CONCLUSIONS  

 In this paper, we presented the performance 
evaluation of OpenADN, a complex multi-
threaded and distributed multi-cloud management 
platform in operation. Behavior of the platform is 

(a) (b)
 

Fig. (10). a) Residual vs. Predicted Response, b) Quantile-Quantile Plot. 
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studied as it starts operating, obtains virtual re-
sources from multiple clouds, allocates the re-
sources to processes and then continues normal 
operation. The profiling data obtained through de-
terministic methods coupled with the two-factor 
full-factorial design helped us to determine wheth-
er the factors selected are significant and should be 
used for further optimization of the platform. The 
factors viz. Functions (host creation time, polling 
and sleep times) and Workloads (2000 users with 
4, 8 and 16 hosts) were selected based on the vari-
ous levels of profiling data collected. Workloads, 
involving varying number of users and hosts, did 
not have a significant impact on the performance 
and their effect was low and indistinguishable. On 
the other hand, after a detailed analysis we have 
reached the conclusion that all the functions, iden-
tified through profiling, have a significant effect 
on the CPU time of the platform. The CPU time in 
turn is an indicator of the performance of the plat-
form. These functions can, therefore, be consid-
ered for optimization to achieve improved perfor-
mance of the platform. It is, therefore, concluded 
that behavioral analysis through layered profiling 
and full factorial analysis of the data can reveal 
vital information about for optimization of multi-
cloud management platforms.  
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