

Abstract— Application Service Providers (ASPs) may obtain

resources from a number of cloud service providers (CSPs) in an
attempt to improve latency and minimize operational expenses
(OpEx). The CSPs may use management and control platforms,
such as OpenStack and EC2 and the network service providers
(NSPs) may use network management platforms, such as,
OpenDaylight. However, today the ASPs do not have a common
management and control platform that would present to them a
converged view of all the cloud and network resources.
OpenADN being developed at Washington University in Saint
Louis aims to allow the ASPs dynamic and real time control of
virtual resources across multiple clouds and networks to provide
efficient application delivery. The OpenADN platform itself is a
complex distributed and multi-threaded system. Performance
evaluation and assessment of need for optimization of such a
complex platform requires precise and fine-grained behavioral
data. In this paper we establish the need for profiling OpenADN
like platforms so that the ASPs can optimize its behavior and
control their cost, performance (latency) and energy
consumption.1

Index Terms—Software defined infrastructure, profiling,
multi-cloud, cloud services, network services, application service
providers, OpenADN, distributed systems, optimization

I. INTRODUCTION
Software-defined infrastructure (SDI) is a generic term that is
used to refer to virtual infrastructures with software-based
control and management systems. The physical devices on
which these virtual infrastructures are created could
themselves be spread over a number of datacenters or cloud
platforms, each controlling a number of datacenters. Some
examples of software that enable SDI implementations include
OpenStack, EC2 and OpenDaylight. SDI allows application
specific virtual clouds to be carved out of physical resources
from multiple clouds and to dynamically control and manage
them. Through SDI, businesses and enterprises, which we call,
the Application Service Providers (ASPs), get a converged

The manuscript was submitted on 1st December, 2014.
Lav Gupta and Raj Jain are at Washington University in St Louis, MO

63130 USA (email: {lavgupta, jain}@wustl.edu).
Mohammed Samaka is with Qatar University, Doha, Qatar (email:

samaka.m@qu.edu.qa)
1 This work has been supported under the grant ID NPRP 6 - 901 - 2 - 370

for the project entitled "Middleware Architecture for Cloud Based Services
Using Software Defined Networking (SDN)", which is funded by the Qatar
National Research Fund (QNRF). The statements made herein are solely the
responsibility of the authors.

*Corresponding Author

view of resources provided by the Cloud Service Providers
(CSPs) and the Network Service Providers (NSPs). This
allows them to use resources available from many providers,
through their APIs, in a manner that enables optimization of
flexibility, reliability, latency and operational expenses
(OpEx).

Software presenting virtualized environment of distributed
physical resources under disparate management tend to be
complex systems. They generally use multithreading
technique of software modularization and concurrent
execution. If the modules, of such a system, do not work in
harmony, performance suffers resulting in inefficient resource
utilization and greater energy consumption [1]. Responding
reactively to performance degradation for optimization results
in higher expenses being incurred during operation of the
existing system and its modification during its lifetime. At the
same time, understanding the performance of the software
platform through profiling should invariably precede
optimization. Using well-known techniques software
engineers are able isolate hot spots that consume
disproportionate share of resources. Multithreaded systems
become difficult to profile because characterizing the effects
of interactions between threads is difficult [16]. Efficient
abstractions need to be developed to capture this behavior
without resulting in exponential analysis times.

OpenADN, being developed at Washington University in St
Louis, is an application delivery platform that creates
application clouds employing, controlling and managing
resources across multiple CSP clouds. OpenADN functions as
an interface between the applications and the SDI layer. It
allows ASPs to dynamically acquire and manage resources
from multiple CSPs and optimize operational expenses. In
principle one would expect these benefits from any such
platform that might be developed in future. However, if the
platform software has not been optimized from the ASPs point
of view, then the resources would be inefficiently utilized
resulting in sub-optimal system behavior and increase in
operational expenditure. Such systems also lead to higher
energy consumption and are contradictory to the notion of
reducing the carbon footprint. Taking advantage of the first
such system being available to us we have attempted to
characterize the behavior of such a platform under operation
and used several profiling techniques to see what could cause
the system to behave sub-optimally. This should spur the

Dynamic Analysis of Application Delivery
Network for Leveraging Software Defined

Infrastructures
Lav Gupta*, Sr. Member, IEEE, Raj Jain, Fellow, IEEE, Mohammed Samaka

2015 IEEE International Conference on Cloud Engineering

978-1-4799-8218-9/15 $31.00 © 2015 IEEE

DOI 10.1109/IC2E.2015.51

305

developers of such systems to fine-tune their platforms saving
money for the users and the planet from harmful effects of
higher energy consumption. Section II describes the
OpenADN platform highlighting its distributed and multi-
threaded nature. Section III deals with profiling approaches
that can be used for platforms like OpenADN dealing with
resources spread across multiple clouds. Section IV takes up
the discussion on profiling OpenADN and directions for
optimization. We conclude our results in Section V.

II. MULTI-CLOUD SDI - OPENADN

A. OpenADN Architecture
OpenADN is a multi-cloud management system. As shown

in Fig 1, on the north side, it offers interfaces for application
developers, application architects, and application deployment
administrators to define the application resource requirements
and deployment policies. On the south side it has many
modules, one for each of the cloud/network management
systems.

Fig. 1. OpenADN Multi-Cloud Management System

Notice that the OpenADN architecture has a modular

structure similar to the OpenDaylight SDN controller [2] with
many southbound interfaces. The northbound interfaces of
OpenStack/ OpenDaylight become one of the southbound
interfaces of OpenADN. While OpenStack allows
implementing client policies in one cloud, OpenADN allows
implementing client policies uniformly among all the clouds.

OpenADN does not directly manipulate the resources inside
the clouds; it simply requests the respective cloud manager to
create those resources. The Application Deployment Manager
specifies the policies regarding when and where to create the
resources.

Most contemporary and future application deployments like
Internet-of-Things (IOT), Cyber-Physical Systems, mobile
apps, massively parallel gaming and virtual reality tend to be
distributed and need to use multiple clouds primarily due to
cost and latency considerations and can use OpenADN to
manage the entire application as if it was in one cloud.

OpenADN is an integrated infrastructure comprising both,
message-level devices and packet-level devices, hosting
application-layer services as well as network-layer services. It
consists of a central global manager and a set of local

managers - one per cloud or network. The administrator starts
only the global manager manually and the rest of the process
is bootstrapped by it. For massively distributed applications,
OpenADN allows multiple zones with each zone consisting of
multiple clouds [14].

B. OpenADN As A Massively Distributed System
 OpenADN has a distributed data plane to optimize
application service deployment. Considering the geographical
spread of resources, a part of control activities are centralized
in the global controller making it easy to introduce new
service, propagate new polities and troubleshoot problems.
However, keeping view the latencies of a highly distributed
data plane, tasks relating to a data center are controlled by a
local controller. The management plane is completely
centralized and ensures that the policies are being enforced
properly and record non-compliance. The system as a whole
can perform many different tasks at the same time leading to
better utilization of the hardware resources and ensuring that
the system as a whole makes progress all the time. OpenADN
is essentially a multi-threaded system where performance is
determined by the execution environment.

III. Profiling Multi-cloud Delivery Platform
In this section we discuss the techniques that we have

selected from in profiling OpenADN.

A. Profiling and optimization
Profiling gives insight into program performance. Program

analysis tools are extremely important for understanding
program behavior. Most software has code that consumes
disproportionate amount of resources and produces higher
CPU loads. Reading of code does not provide reliable
information about program behavior under execution. Using
intuition on multi-threaded programs does not usually give
right results.

B. Profiling techniques for Application Delivery Platforms
New profiling, characterization, and modeling

methodologies are required to understand the nature
of architectural behavior under full system virtualization. In
order to pinpoint the sections of code that should be
optimized, a programmer needs detailed data on how that
program behaves [3]. We shall see here the techniques that can
be applied to distributed, multi-threaded systems [16]. We’ll
divide these techniques into static, dynamic and concurrency
profiling
1) Static Profiling

Static analysis is the formal construction of program
execution models [4]. Model checking is a static analysis
technique that is often applied to multi-threaded programs to
explore all feasible inter-leavings exhaustively to ensure
correctness properties [5]. Model checking becomes
computationally expensive due to a vast number of feasible
inter-leavings in a large multi-threaded system. Static-analysis
techniques give assessment of relative time and temporal
ordering and do not give absolute time [6]. For assessment of

Automatic Application Deployment and Delivery Platform
(OpenADN)

Cloud
Datacenter

Enterprise
Datacenter

ISP Network

Distributed Virtual Infrastructure

Massively Distributed Applications

Network
Mgmt. System

Cloud
Mgmt. System

Cloud
Mgmt. System

Cloud
Datacenter

306

absolute times dynamic we applied dynamic profiling [15].
2) Dynamic Profiling

Dynamic profiling is the only practical approach to
behavioral analysis that can incorporate aspects of absolute
time by inspecting behavior of a running system. It is an active
form of profiling in which the system being measured
explicitly generates information about its execution
parameters. Conversely, passive profiling relies on explicit
inspection of control flow and execution state through an
external entity, such as a probe or modified runtime
environment. Three main families of dynamic profiling
techniques code instrumentation, statistical sampling and
concurrent profiling.

a) Code Instrumentation: An instrument is a set of additional
instructions injected into the target program to generate the
required information. Instrumenting a program can cause
changes in the performance of the program, potentially
causing inaccurate results and has to be carried out carefully in
a controlled manner. These instructions count how many times
various parts of a program get executed. Some instrumentation
systems [5] count function activations while others [7] count
more fine-grained control flow transitions.

b) Statistical Profiling: randomly samples the effective
instruction pointer/program counter, and deduces where time
is being spent. They are not as intrusive to the target program.
They can show the relative amount of time spent in user mode
versus interruptible kernel mode such as system call
processing and also the user time out of the total execution
time [17,18]. In OpenADN environment this could, for
example, provide valuable information on whether
optimization should at all be attempted.

c) Deterministic profiling refers to all function calls, function
returns, and exception events being monitored and precise
timings made for the intervals between these events. In
Python, since there is an interpreter active during execution,
the presence of instrumented code is not required to do
deterministic profiling. Python automatically provides
a hook (optional callback) for each event. Call count statistics
can be used to identify bugs in code and to identify possible
inline-expansion points. Internal time statistics can be used to
identify ``hot loops'' that should be carefully optimized.

3) Concurrency Profiling

Concurrency profiling can be additionally used for
multithreaded applications. Resource contention profiling
collects detailed call stack information every time that
competing threads are forced to wait for access to a shared
resource. Concurrency visualization also collects more general
information about how multithreaded application interacts
with itself, the hardware, the operating system, and other
processes on the hosts. It can help locate performance
bottlenecks, CPU underutilization and synchronization delays
[8,9]

IV. OPENADN PROFILING
The complexity of the multi-threaded OpenADN platform

required precise and fine-grained behavioral data while in
execution, coupled with off-line analysis to help characterize
the performance of the platform and possible need for
optimization. Profiling of OpenADN was, therefore, carried
out at multiple levels. To validate the functionality, we ran
OpenADN in a virtual environment created by Mininet [10].
Mininet allows emulating a whole virtual network running real
kernel, switch and application code, on shared physical
resources of a machine. The following virtual resources were
created for profiling OpenADN: One zone consisting of a
global controller, two data center sites with a local controller
each, a name-server, 7 hosts per site and client host with
10000 users. The selection of stimuli (set-up and input data)
and multiple runs of the platform ensured that behavioral data
for most control paths are collected.

To recapitulate the virtual network bootstrap process, the
resource manager adds resources from different sites to the
global resource pool. It then assigns a role to each virtual node
that is started. The client host simulates around 10,000 users,
each starting a separate user session with the application. The
global controller (GC) initializes a workflow manager (WFM).
The WFM spawns an initial workflow thread (WFT) for an
application, say ABC, in the only zone, say US-E. The WFT
registers this application instance with the name server. The
name server advertises this mapping when the WFT explicitly
activates the mapping entry. WFT also gets a proxy node
allocated to it that will be the interface between the workflow
services and the external users. The WFM is responsible for
allocating a proxy node to each WFT. However, the WFM can
do so only when it has the resources. WFM does not keep the
state so WFT has to retry. The WFT runs an exponential back-
off mechanism to repeat its request instead of flooding the
system with useless request messages. The WFM on the other
hand independently attempts to get the resources required to
allocate a proxy node. While this happens, each datacenter
controller boots up independently and tries to register itself
with the GC.

The WFM makes a resource request to site 1 that offers
resources to the WFM only after its data plane nodes have
registered their resources with it and so it does not have any
available resources. The WFM would try other sites and repeat
these requests till it gets the required resources. In the
meantime, the WFT thread keeps on polling the WFM for a
proxy node. Eventually WFM is flooded with resource updates
from the different sites. Each data plane node in our
experiment reports 1000 units of resources and hence the total
resource available per-site is 5000. WFM sends the request to
allocate a data plane node to run the proxy service to the first
site that reports enough available resource. The proxy node is
initialized and the WFM starts gathering the resources to
deploy the other services within the workflow.

Once the required data plane nodes with enough resources to
run the workflow have been identified, the next step is to
actually start the application services on these nodes and setup
the message and packet routing services. WFT gets to the job
of starting the services for the workflow after the WFM has
allocated it the required resources. After each service is

307

initialized it connects to the OpenADN socket that opens a
communication channel between the service and the platform.
The OpenADN socket also starts a heartbeat reply service to
reply to aliveness queries from the platform. The WFT
attaches itself to one of the ports of the shared proxy service.
This concludes the bootstrap process.

�� �����	
���
��������
�
To get the broad idea of the efficiency of the platform code

executing in a virtualized environment, the Unix time utility
was used. The platform software “driver_mininet” created
virtual hosts over which the platform modules – global
controller, local controller, name server, node controller and
clients ran. The program was run to bootstrap the process and
run it till all the modules were added and services started
running. The Unix built-in time command was invoked with:
/usr/bin/time -f "\n%E elapsed,\n%U user,\n%S system,\n%M
memory\n%x status" driver_mininet.py. A number of runs
were performed for the same virtual environment and data
from five of them are given in Table I.

The elapsed time is the total platform run time for booting
and starting new services, user-space time is for non-system
calls or CPU time spend outside the kernel and system-calls is
time spent in kernel specific functions.

Table I
Run time used for user and system activities

(time unit: seconds)

Runs I II III IV V Averages % Run
time

User Space 0.53 0.55 0.62 0.6 0.61 0.58 1.65
System
Calls 0.76 0.75 0.65 0.67 0.68 0.7 1.99

Run time 35.82 35.6 34.65 34.8 35.06 35.19 100
Res Memory
Block(kB) 19216 19216 19232 19216 19232 19222 -

Of the average total elapsed time of 35.19 seconds for which
the platform software was executed, the time spent in user
functions and kernel space was 1.65% and 1.99%,
respectively. This gives a sense that a large part of the time is
spent in I/O waits and sleep times for dealing with dependent
asynchronous concurrent processes. However, it cannot be yet
said whether this time relates to unavoidable delays and the
situation can be improved through optimization. This called
for the next level of profiling, i.e., at module/function level to
see which of the modules are more CPU intensive.

The same modules were also run on separate physical
machines for comparison and the results obtained are given in
Table II.

Table II
Time used for user and system activities on physical machines

Function User Space
System
Calls Run Time User(%)

Name Server 14.161 5.072 229.438 6.17

Global Controller 83.637 15.797 200.835 41.64

Local Controller 18.549 7.16 175.57 10.57

Node Controller 19.95 8.86 156.99 12.71

Client 0.428 0.036 18.855 2.27

136.725 36.925 781.688 17.49

On physical machines, the platform does not have to spend
time creating virtual machines for its own modules as well as
for running services. Even in this case the overall user-space
time is 17.49% and even lesser for kernel calls. Among these
the global controller used the time more effectively with user
functions taking up to 41.64% of run time on an average.
However, in the actual operational environment, these
modules will be hosted on VMs that will take finite amount of
time to create, start and augment.

This simple profiling indicates the possibility of higher load
on the CPU because of potentially wasteful activities like
waiting on I/O calls and sleep functions. While in many cases
where asynchronous linking of threads are used some waiting
would be unavoidable. However, one needs to see whether
these could be optimized for 1) making the platform more
efficient 2) correctly dimensioning the resources leased, and 3)
distributing the workload properly.

B. Deterministic Profiling of OpenADN
Deterministic profiling of OpenADN programs was carried

out to see execution pattern and the resultant CPU loads of
various functions. This was done through cProfile provided by
the Python library. The profile of these programs gives a set of
statistics that describes how many times different functions are
called and how much time the CPU is spending in various
modules. The module ‘pstats’ [11] was used to format these
statistics to make them amenable to analysis. Fig 2 gives a
sample output.

It can be seen that the total time that the driver_mininet.py
was executed in the run above was 166.870 seconds. Out of
this the simulator module took 166.106 seconds.

Fig. 2. Sample Deterministic Profile Run
Legend: ncalls: the total number of calls, tottime: total time spent in the
given function (excluding sub functions) seconds, percall: tottime divided
by ncalls, cumtime: total time in this and all sub-functions seconds, Percall:
cumtime divided by primitive calls, filename: data for each function

It was initially suspected that the Zeromq messaging library
[12] poller takes up a lot of CPU time. A cursory analysis of
the output shows that the poller is called 46914 times and the
total time spent is 117.168 seconds, which is 70.21% of the
total time. However, these calls are distributed and on each
call the time spent is just 0.002 seconds. Creation of the virtual
network topology takes 37.856 seconds and starting the virtual
network takes another 6.151 seconds. It was also thought that
the sleep module might also be wasting a lot of CPU time. It
took 15.016 seconds of the total time. Different important
modules take up the times given in Table III.

308

Table III

Time for different functional modules

Module

CPU time taken
(seconds)

Name server 5.009

Global controller 5.008
Local controller 0.014

Hosts 6.013

Client host 0.065

We would see later that the Name Server and the Global
Controller sleep through most of the time. Their job is largely
reactive in nature, getting activated when other modules need
their services.

C. Detailed Line-by-line Analysis
Profiling at the platform and function levels gives a good

idea of the time spent by the CPU in kernel space calls, user
space calls and waiting for I/O and in various modules of
OpenADN. It was observed that a large proportion (96.36%)
time was spent in waiting for I/O. Polling operations took
about 70% of the execution time. The program spent 15
seconds of the total 166.87 seconds in sleep mode. OpenADN
functional modules took up to about 6 seconds each.

Profiling at this level gave a good indication of overall
execution times and of the functions that were consuming
unduly large amount of CPU time. It was not enough to tell us
which modules to look into to locate the potential hot spots
and optimize the software. As is often the case, the reason for
a particular module or functionality taking a large amount of
time could be pin-pointed to some small part which may seem
to be innocuous on simple reading of the code. Some
statements could trigger a library function or call to a special
method that may not be so obvious. The function level
profiling only times the explicit function calls and not the
special methods called. Such profiling would not identify a
slow operation in the library function like Zeromq. If a
statement triggers computation when using libraries, when
there is no explicit call, function profiler will not usually break
it down.

A more detailed line-by-line analysis of the program was
undertaken to find out which parts of the program take more
CPU time. A more intrusive line profiler that could go into
each function and time execution of each statement was used
for this purpose. The Kernprof python script and the @profile
decorator used in a judicious manner allow this kind of
analysis [13]. This profiler keeps track of multiple statement
executions, sums up the total time each statement takes in
multiple passes and avoids profiling overheads. The profiling
result is a binary file that could be deciphered with ‘pstats’ or
a similar function. The output consists of the following:
a) Hits: Number of times that line was executed.
b) Time: Total execution time
c) Per Hit: Average amount of execution time
d) % Time: Percentage of time spent on that line relative to the

total amount of recorded time spent in the function.
e) Line Contents: Actual source code.

We give snapshots of some sample outputs in Fig. 3 (a)
through (d) and then discuss some important aspects revealed
by these.

Fig. 3 is part of a typical profiling run. However, the
averages of multiple runs were quite close to individual runs
and so this figure provides sound grounds for discussion. The
overall execution times for different functions are given in
Table IV.

The illustrations in Fig. 3 show some of the portions of
profiling data that indicate possible need for optimization. Fig.
3a and 3b show linking to the switch takes up a major
percentage of the execution time. The name-server takes 6.8%
while the global controller takes 4.2%(not shown). The hosts
take the longest accounting for 68.5% of the time.

(a) Profile run for creation of topology

(b) Profile run for linking hosts to a switch

(c) Start of global controller

(d) Simulation run of the platform

Fig. 3. Results of Line by Line Analysis

Fig. 3c and 3d indicate large amount of times taken up by
the sleep function and the polling function. The global

309

controller sleeps most of its execution time and similar is the
case with the name-server. This could mean that these
functions are demanding more virtual resources than necessary
and are leading to higher OpEx. Also the function to check the
ports for inter-process messages takes up 87.2% of the entire
simulation time.

Table IV

Overall function execution times
Function Execution time

in seconds
Creation of virtual topology 10.174
Starting the virtual network 2.032
Starting global controller 5.007
Starting local controllers 0.014
Starting name server 0.012
Starting client host 0.025
Starting hosts 5.334
Simulation 238.897
Total 261.495

V. DISCUSSION, CONCLUSIONS AND FUTURE WORK
Multi-cloud management systems, like OpenADN, have

parts of the code that account for unduly bigger share of time
elapsed during execution. This could lead to suboptimal
application delivery, increased resource usage and operational
expenses. ASPs who would use such systems would like to
optimize their platforms to control their expenses and for other
desirable features like reduced latency and reduced energy
consumption.

Visual examination of the code does not provide reliable
information about what could be wrong with it. Using
intuition on multi-threaded programs is still worse. It becomes
necessary to generate program profile with data collected at
various levels-platform, functions and statements.

For OpenADN, the top level analysis reveals that the overall
execution time has a large component of non-user, non-kernel
time that could be explained by I/O waits. A concern that
arises is that some part of this time could be spent
unproductively using up resources and contributing to energy
consumption. A function level analysis makes apparent the
functions that have potential hot spots. Line profiling on all of
the modules simultaneously allows interplay of threads and
reveals the parts of the functions that could be helped with
optimization efforts.

In our experiments the detailed profiling points to the parts
where processes wait for other processes to finish their jobs
and provide inputs and polling of ports to see if any inter-
process messages have arrived as taking a large amount of
time.

Optimization could simply mean fine-tuning the sleep/wait
times of processes built into the platform. On the other hand
there could be more serious issues and optimization would
involve changing of code to do something differently.

Based on the profiling data, optimization could involve the
following:

1. Critically examine the time spent in I/O waits and take
remedial measures wherever possible

2. Examine the use of sleep statements and fine-tune their
durations

3. Examine the use of heartbeat and ways to make it
efficient

4. Optimize the time take to dynamically create and destroy
virtual resources

Profile-led optimization makes use of the results generated

by deterministic, functional and line-by-line profiling to get
optimized code. If the execution environment fairly represents
the usage scenario then profile guided feedback benefits
optimization. Future work will involve demonstrating
usefulness of the approach in carrying out optimization of
OpenADN.

The scope of the problem at hand, however, was to see
whether a combination of carefully selected profiling tools,
working at different levels of the OpenADN program
hierarchy (and by extension other similar platforms), would be
able to pin-point the bottlenecks that could cause higher
consumption of virtual resources. From the results discussed
above it is clear that it would be in the interest of reduced cost
and increased agility of doing the ASP business to carry out
profiling at different levels as a precursor to optimization.

REFERENCES
[1] M. A. Khan, C. Hankendi, A.K. Coskun, M.C. Herbordt, “Software

Optimization for Performance, Energy, and Thermal Distribution: Initial
Case Studies,” International Green Computing Conference and
Workshops (IGCC), 2011, pp. 1-6.

[2] OpenDaylight, http://www.opendaylight.org/project/technical-overview
[3] D. Eklov, N. Nikoleris and E. Hagersten, “A Profiling Method for

Analyzing Scalability Bottlenecks on Multicores,” ACM, 2012.
[4] D. Jackson, & M. Rinard,“Software Analysis: A Roadmap,”

Proceedings of the IEEE International Conference on Software
Engineering, 2000, pp. 133-145.

[5] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking. The MIT
Press, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 2000.

[6] M. Rinard, “Analysis of Multithreaded Programs,” Proceedings of the
8th International Symposium on Static Analysis, 2001, pp. 1-19.

[7] D. Chen, N. Vachharajani, and R. Hundt, ‘‘Taming Hardware Event
Samples for FDO Compilation, Proc. 8th Ann. IEEE/ ACM Int’l Symp.
Code Generation and Optimization (CGO 10), ACM Press, 2010, pp.
42-52.

[8] Concurrency Profiling, http://msdn.microsoft.com/en-
us/library/dd264994.aspx, 2013.

[9] Multithreaded Programming Guide, “Timers, Alarms, and Profiling,”
Oracle, 2012, https://docs.oracle.com/cd/E26502_01/html/E35303/gen-
90808.html.

[10] B. Lantz, N. Handigol, B. Heller, and V. Jeyakumar, “Introduction to
Mininet,” https://github.com/mininet/mininet/wiki/Introduction-to-
Mininet.

[11] The Python Profilers, https://docs.python.org/2/library/profile.html
[12] The Zeromq messaging library, www.zeromq.org
[13] Kernprof Line_Profiler, https://github.com/rkern/line_profiler.
[14] S. Paul, "Software Defined Application Delivery Networking"

(2014). All Theses and Dissertations (ETDs). Paper 1331
http://openscholarship.wustl.edu/ etd/1331

[15] J. Mars and R. Hundt, ‘‘Scenario Based Optimization: A Framework for
Statically Enabling Online Optimizations,’’ Proc. 2009 Int’l Symp. Code
Generation and Optimization (CGO 09), IEEE CS Press, 2009, pp. 169-
179.

[16] G. D. Waddington, N. Roy and D.C. Schmidt, “Dynamic Analysis and
Profiling of Multi-threaded Systems,” IGI Global 2009.

[17] Wikibooks,“Introduction to Software Engineering/Testing/Profiling,”
20,http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/
Testing/Profiling.

[18] Intel Whitepaper, “Optimizing Software for Multi-core Processors,”
http://www.intel.com/content/www/us/en/intelligent-systems/intel-
technology/multicore-optimizing-software.html

310

