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crease in sophistication and connectedness of the healthcare networks, their attack surfaces and vulnera

nificantly. Malicious agents threaten patients' health and life by stealing or altering data as it flows amo

mains of healthcare networks. The problem is likely to exacerbate with the increasing use of IoT devices

uds in the next generation healthcare networks. Presented in this paper is MUSE, a system of deep hiera

ral networks for timely and accurate detection of malicious activity that leads to alteration of meta-informa

the dataflow between the IoT gateway, edge and core clouds. Smaller models at the edge cloud

 less time to train as compared to the large models in the core cloud. To improve the speed of traini

 detection of large core cloud models, the MUSE system uses a novel method of merging and aggregating

dge cloud models to construct a partly pre-trained core cloud model. As a result, the model in the core

ntially smaller number of epochs (6 to 8) and, consequently, less time, compared to edge clouds, train

35 to 40 epochs to converge. With the help of extensive evaluations, it is shown that with the MUSE s

ed models can be trained in significantly less time than the unmerged models that are created independe

ud. Through several runs it is seen that the merged models give on an average 26.2% reduction in training

perimental evaluation we demonstrate that along with fast training speeds the merged MUSE model give

 test accuracies, ranging from 95% to 100%, in detection of unknown attacks on dataflows. The merged

lizes very well on the test data. This is a marked improvement when compared with the accuracy given 

el as well as accuracy reported by other researchers with newer datasets.  

loud networks, edge clouds, network function virtualization, critical healthcare, deep neural networks, stacked autoen

eural networks, multi-cloud systems 

tion 

 of providing healthcare is steep and spiraling 

e US alone spent about 3.8 trillion dollars in 

gering 17.7% of GDP [1]. Despite substantial 

budgets, most countries are saddled with 

healthcare systems. Administrations are 

blamed for inadequate response to medical 

s, delays in diagnosis of acute cases, insufficient 

of chronic patients, re-admissions, and above 

ny preventable errors. Some readers will be 

 know that preventable errors are the third 

se of death in the US [2]. 

ve treatment outcomes with timely and accurate 

nd, at the same time, reduce the rising cost 

ealthcare on governments, modern healthcare is 

 relying on technology. Trends show the 

of the Internet of Things (IoT) devices for the 

of patient data and the use of multi-cloud 

for storage and analytics. Cloud adoption, 

including multi-cloud and hybrid cloud, is projec

International Data Corporation, a market intell

company, to be a staggering 90% of mid-size and lar

organizations by 2022 [3]. In healthcare the growth

cloud is expected to be 37% in 2021 as against 1

2019 [4]. These developments have the potential of 

crucial minutes in the diagnosis and treatment of c

hospitalized, or ambulance bound patients. In other 

they could drastically improve the chances of p

survival and return to good health.  

Medical IoT is helping implement automatic 

monitoring and recording of patients’ vital signs, al

closer monitoring, which is not possible manuall

global Covid-19 pandemic has accelerated the adop

medical IoT in hospitals [5]. Because of rapid upsu

the use of IoT devices, analytics and storage are

increasingly pushed from premises to the edge and

public clouds (also called core clouds in this paper).

technology trends promise to reduce reliance on bric

mortar healthcare infrastructure and make the

generation healthcare less expensive and more ef
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y of patients and hospitals to crippling 

ttacks [6]. Over the last two years, 90% of 

organizations have suffered at least one 

 [7]. This adds up to a 71 percent increase in 

or incidents in 2020 over 2019 [8]. 

 major sectors of the economy, the largest 

ransomware related insurance claims during 

came from the healthcare sector [9]. Any attack 

patient data, flowing through an intricately 

althcare system, poses severe threats to patients 

osed, treated, or carried to a medical facility on 

ce. Research of Choi and Johnson shows that 

es affect a hospital’s 30-day mortality rate 

10]. These attacks not only threaten serious 

s on routine medical procedures, but also 

 risk of critical medical devices, such as 

, being hacked and endangering patients’ lives. 

ample is recall of insulin infusion pumps by the 

and Drugs Administration because of the 

of attackers changing settings and takeover 

sulin delivery [11]. 

t generation healthcare is expected to make 

se of sensing devices, clouds, and virtualization 

ication. This makes the system complex, opens 

ies of the constituent domains and increases the 

ce. Security and privacy concerns have so far 

adoption of cloud infrastructure in healthcare to 

[39]. Conventional intrusion detection systems 

me largely ineffective in such an environment 

onally, there is lack of research in finding more 

ans to tackle increased risk of attack in the next 

healthcare. This provides motivation for this 

objective of this work is to create a credible 

ainst known and unknown or “zero-day” 

per, we propose MUSE (Merged Hierarchical 

ing System with Layer Reuse for Security), a 

sisting of a hierarchy of distributed deep 

dels in the edge and the core clouds. MUSE 

lthcare providers’ operational systems from 

ng within or outside their organizations. MUSE 

cks on dataflows by examining the data being 

to and from the clouds and detecting even very 

es in the metadata associated with these flows. 

 working in the edge and core clouds are trained 

 malicious activity by detecting abnormal 

n metadata features like source- or destination-

retransmissions because of payload error, mean 

, content size of the data and packet transfer 

lty of this work lies in tackling the increased 

ce of the next-generation health care systems by 

archy of cooperating neural network models in 

d the core clouds. The challenge in doing this is 

e distributed deep learners grow in size and 

Any effort to increase the training speed often res

reduction in detection accuracy. We tackle the

challenge of fast training of large and complex core

models and high accuracy of detecting know

unknown attacks by using an innovative merged

neural network (DNN) models in the core cloud

novelty of the method lies in its hiera

implementation and use of merged trained edge mo

reduce training time in larger core cloud and still m

high accuracy of detection. 

Specific contributions of this paper are: 

a) Establishing a reference architecture for 

healthcare applications, e.g., ambulance bound 

patients. 

b) Based on the attack surface presented to the flow 

in the multi-domain next-generation hea

architecture, evolving a threat model clearly defin

information technology and operational tech

related threats and their mitigations.  

c) Proposing a novel method based on hierarchical D

protect the patient data flowing between the IoT d

and the edge cloud and between the edge clouds a

core clouds.  

d) Evolving a merged core cloud DNN for improvem

training time and accuracy of prediction of ab

activity in the data flows. 

e) Evaluating the proposed method and discussin

results. 

The rest of the paper is organized as follows. In S

2, we discuss the related work to show how our wo

an existing gap. Section 3 presents the conceptual 

and architecture of the next generation healthcare ne

laying down a foundation for discussing the threat m

Section 4. The merged hierarchical model is discus

Section 5. In Section 6, we discuss the evaluation 

Finally, Section 7 gives a summary of the conclusion

2. Related Work 

To get an assessment of the state of the art, we p

here selected published research done mainly during

21. Some earlier research might have been included

contemporary relevance and comparative value. 

2.1 Works comparing shallow and deep neural ne

for network intrusion detection  

During the last three years a number of researcher

published comparison shallow machine learning an

learning methods for security applications. G

improvement of detection capabilities with deep le

are in part responsible for more researchers looking 

a credible rival to shallow learning for such applic

Kim and Gofman (2018) use NSL-KDD dataset and
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48.30% detection accuracy [13]. This is typical 

search in application of deep learning in cyber 

nother contemporary research by Xin et al. 

 that both shallow and deep learning have their 

ages and disadvantages in implementing IDSs 

can be recommended over the other [14]. 

 and Heikkonen (2018) show that sparse 

s (SAEs) with Support Vector Machine (SVM) 

ass classification give 84.86% accuracy with the 

dataset, which is better compared to a stand-

 model, which gives an accuracy of 79.42% 

et al. (2018) use RBMs with NSL-KDD, 

 and UNSW datasets and obtain 90.99%, 

 97.11% accuracy. The corresponding numbers 

e 88.32%, 93.38% and 96.74%.  Generalization 

nd the method is not effective in detecting 

ttacks. They conclude that deep learning 

rform better with large volumes of data and use 

formance machines with GPUs but have a 

ing time than machine learning methods [15]. 

ssif et al. (2021) conclude that deep learning 

 shallow machine learning in many 

, but this may not always be the case for 

ty. They experimentally compare the 

e of Random Forest (RF) (Shallow Learning) 

onnected Feedforward Neural Network FNN 

p Learning) and find that  RF performed better 

score of nearly 0.8, against the 0.6 obtained by 

They, however, agree that deep learning for 

ty is under-researched.  

work using deep learning for healthcare 

 

e have not come across any work that studies 

of deep learning in security of multi-cloud 

systems, there has been obliquely related 

at researchers may find useful for healthcare 

t. Hayyolalam et al. (2021) peresnt a 

that uses deep reinforcement learning (DRL) in 

ud to offload the tasks from the IoT sensors to 

oud [34]. Authors claim that the DRL method 

RL layers or devices in the edge cloud to work 

nd help reduce network latency congestion. 

t al. (2021) propose digital twin technology in 

irtual replica of a physical asset is used to 

nd detect heart problems using a novel 

iogram (ECG) classifier [29]. Each patient has a 

updated by this classifier using DTs of similar 

is allows physicians to be able to predict the 

 their treatment. Their method uses multiple 

ng methods such as Long short-term memory 

d Convolutional Neural Network (CNN) with 

tes of 97.09% and 96.67%, respectively. 

rush hours [63]. This concept uses powerful nodes

parent nodes (PNs) that can share their services with

nodes by splitting the tasks between these nodes and

the PNs as needed. Similar to [63], AL-KHAFAJIY

introduce Cognitive Fog (CF) model that uses multi

nodes to offload the tasks from the IoT devices and

parallel processing on the fog cloud [65]. They use m

machine learning classifiers, namely Decision Trees

K-Nearest Neighbors (KNN), and Density-based 

clustering of applications with noise (DBSCAN), to

anomalies in the transmitted data. The final deci

based on a majority vote of the decisions made by

classifiers. However, using these classifiers requires 

labelled data, which is not readily available in hea

systems. 

2.3 Recent application of deep learning methods in d

areas 

Hizal et al. (2021) use a CNN model-based IDS r

on a GPU to achieve 99.86% accuracy for 

classification using NSL-KDD dataset [17].  Chen a

researchers (2020) have tested the CNN mode

CICIDS2017 dataset and get an accuracy of 96.55% 

data [18]. Unlike our work the authors use a sing

cloud structure. Training times of the models in the

have been discussed.  

Gopalakrishnan et al. [2020] present a deep le

based traffic prediction with a data offloading mech

with cyber-attack detection (DLTPDO-CD) techniqu

The proposed model involves three major processes:

prediction, data offloading, and attack detection. F

attack detection part a deep belief network 

optimized by a barnacles mating optimizer (

algorithm called BMO-DBN is applied for cyberatta

mobile edge computing. With BMO-DBN the auth

an accuracy of 97.65%. For comparison they foun

DBN they get a lower accuracy of 96.17%. 

In the experiments in [20] Xun et al. (2021) utiliz

and LSTM networks to build different driving be

evaluation models in edge network assisted vehicle d

The accuracy rate and loss value of training data in

are 96.7% and 0.189, and the value in LSTM are 

and 0.029. On the test dataset, accuracy rates are 

and 95.1% for CNN and LSTM respectively.  

Lin’s research (2018) shows that methods rely

attack patterns and risk assessment have low accura

are not useful in real-time cloud systems. In mult

computing environment, using a combination of res

Boltzmann machine (RBM) and SoftMax, they achie

highest accuracy of 95.84% with KDD Cup '99 and

KDD datasets, which is better than machine le

algorithms in similar situations [21]. Otoum et al. 

present what they call a behavior-classification ap

for network intrusion detection [22]. They prese
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acks achieved is 99.65% with eightfold cross-

>10,000 records). For attacks with less than 500 

 average accuracy is 95.41%. Roy and Cheung 

ent a study on the feasibility of deep learning in 

r wireless sensor networks [23]. With Bi-

Long Short-Term Memory Recurrent Neural 

LSTM RNN) model and UNSW15 dataset, the 

ieve 95% or more in attack detection. Using 

 clustered detection system, they achieve an 

f 99.91%, with a detection rate of 99.12%. 

padam and Moldovann (2018) have developed a 

 prototype system to investigate the capability 

ning based binomial and multinomial models to 

ork intrusions in real-time. They have compared 

g models built with H2O and DeepLearning4J 

machine learning models like Random Forest, 

ctor Machine, Logistic Regression and Naive 

 NSL-KDD dataset. The H2O deep learning 

omial and multinomial models generally 

d the other models, achieving over 99.5% 

curacy using cross-validation and over 83% 

 the test dataset. 

al. (2018) propose a deep learning classification 

structed using stacked Non-Symmetric Deep 

rs (NDAEs) [25]. They have implemented the 

PU enabled TensorFlow and evaluated it using 

up '99 and NSL-KDD datasets. Accuracies of 

 DBN with Kddcup99 are 97.85% and 97.9% 

. With NSL-KDD the accuracies are 80.58% 

. The authors have also showed that for training 

er model their NDAE takes 2024 sec as against 

ds taken by an eight layer DBN 54660, NDAE 

mar et al. (2019) combine Network Intrusion 

ystem (NIDS) and Host Intrusion Detection 

DS) to create a deep learning approach based on 

l network (DNN) to proactively detect and 

foreseen and unpredictable cyberattacks [26]. 

ents were run for 1000 epochs with learning 

 in the range [0.01-0.5]. For older datasets like 

1999) most of the DNN network topologies 

n accuracy in the range of 95% to 99% while 

UNSW-NB15 (2015) and WSN-DS (2016) 

er train accuracy in the range of 65% to 75%.  

 of Abusitta and co-researchers (2019) is one of 

w on multi-cloud but involves use of non-

 cloud structure for IDS [30]. Each of the cloud 

ave incomplete information and work 

ly. Normally receiving feedback from various 

 aggregating them takes time and make the 

uitable for real-time applications. The authors 

tacked Deionizing Autoencoder Model (SDAE) 

makes decision in the absence of complete 

m the IDSs. It has been implemented on GPU-

sorFlow and evaluated using a dataset derived 

(ranging from 70 to 350) is 87.5%. 

He et al. (2021) have worked on CNN based supe

pretraining module and the AE-based data reconst

module.  With the USTC2016 datasets they achieve 

and 97.95 for malicious and benign traffic respective

with CIC-IDS2017, 89.45% for malicious and 80.2

benign traffic [27]. 

In another recent study, Udhendran and Balam

(2021) use autoencoder for farming applications 

year 2020 dataset from Plant Pathology, to achie

accuracy of 95% for training data and 90% or mo

validation data (2021). The work by Elayan and 

(2021) deals with detecting diseases and problems fr

ECG DT using MIT-BIH Arrhythmia Database.

LSTM the authors achieve validation accuracy of 9

and training accuracy of 98.96%. Using CNN val

accuracy is 96.67% and training accuracy is 98.96% 

In [34] Hyolalam et al. (221) propose a smart hea

framework that makes use of edge technology an

reinforcement learning. Processing takes place at th

but can be offloaded to public cloud if the volume

data so demands. The authors have not performe

experimental evaluation for detection accura

computational complexity but feel that for real-time

applications some method of training reduction wo

necessary.  

From the above-mentioned findings, we can co

that there have been sporadic successes in applyin

learning to network intrusion detection. However

work remains in its infancy [51]. We did not come

any work that uses a merged model for hiera

distributed networks in multi-clouds. The work i

introduces elements of the initial work on hiera

neural networks in the context of critical se

However, the concept has been developed, teste

described for the first time in more detail this paper. 

3.    Conceptual layout and architecture of the nex

generation healthcare system 

The generic layout of the next generation hea

service assists in understanding the flow of da

provides useful inputs for evolving the system archit

This architecture is then used to prepare a threat mod

carry out mitigation planning specific to the cyber-p

system that we are considering. We depict the 

layout of the next generation of healthcare services 

1 and describe its domains below. The constituent do

act as a source, a sink, a storage or an analytics resou

3.1 The healthcare network domains 

As shown in Fig.1, we subdivide the network in

IoT, the multi-cloud domain and the visualization do

The data transmission among the domains ca
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oviders (ISPs) are expected to increasingly 

 brief description of these domains is given 

T domain: The IoT domain consists of a 

us mix of wired and wireless, wearable, 

r implanted biosensors, actuators, and other 

ices, for patient data acquisition and delivery of 

ach of the sensing devices performs simple 

monitoring pulse rate, oxygen saturation, or 

ure. Actuators, on the other hand, perform the 

vering treatment like activating oxygen flow or 

ulin, based on commands from clinical staff or 

es. In the case of ambulance bound patients, 

monitoring by IoT devices, there also are auto-

in terms of alerts and suggestions to the 

staff inside the ambulance. This domain is 

 source, producing large volumes of multi-

l patient data, but also acts as a sink for the 

sent to the actuators and other devices.  

es present several operational challenges due to 

 battery power, small memory, and low 

capabilities. Consequently, these devices 

 external storage, processing, and analytics 

 the multi-cloud domain. At the edge of the IoT 

he IoT gateway to which most of the devices 

e IoT gateway also acts as an interface between 

ain and the cloud domain and does the task of 

 data conversion when required. Some of the 

 connect directly to the service providers wired 

VNS. 

d domain: In our work, the cloud domain has 

ed to consist of the hierarchy of edge and core 

hown in Fig 1. The edge clouds will be like 

ed by the mobile service providers through the 

quipment on mobile towers collocated with the 

s. These edge clouds are closest to the patient 

e relatively inexpensive and low latency 

 to the multi-cloud system. The edge provides 

 for all the workload that can be better 

y cloud resources closest to the devices in the 

sophisticated analytics. The data collected by the

clouds, may usually be required for diagnostics 

current acute ailment of patients or active monitor

patients in the edge cloud area. When no longer a

required in this manner, the data can be moved to th

clouds for permanent storage. The core clouds ca

analyze a vast amount of historical and real-time data

sophisticated AI based analytics. However, the conne

cost and latency will be much higher than that of th

clouds. In this paper, we will use the terms core clo

main cloud interchangeably with the name public 

When arranged in a hierarchical manner, a mult

design provides a combination of low latency,

storage, optimized bandwidth cost, and high ana

sophistication. While the edge clouds aid quick diagn

emergency and acute cases, computationally dem

inference algorithms in the larger core clouds h

determining patterns in historical data that correlat

current symptoms. This helps in differential diagn

discovering yet to surface ailments [36].  

c) The visualization domain: The visualization dom

predominantly a sink that consumes the analyzed 

many forms. The clinical staff using the data ca

generate small amounts of data in the form of com

instructions, or prescriptions. This domain cons

mechanisms for presenting multiple streams of pro

data to the concerned clinical staff. The domain also 

the clinical team to choose from several strea

incoming information to get a good idea of the health

patient, catch the exceptions and anomalies, and th

signs of developing complications [37]. The infor

can be presented in graphics, tabular and other for

assist doctors in making a fast and accurate diagno

the case of data from an ambulance, the doctors may

to communicate with the paramedics to provide gu

for immediate patient care. It is understood

improvement in visualizations can improve diagnos

in turn, outcomes of the treatments. 

3.2 The architectural design of next-generation heal

The architecture is shown in Fig. 2. The function

of the design is to provide comprehensive data to m

experts as well as applications that process them or 

the devices used for patient care. This re

functionalities like image acquisition, analytics

communication, remote patient consulting, cont

monitoring, and telemedicine. All this results 

movement of a large amount of data from the IoT d

to the cloud domain for analytics and storage. 

The proposed architecture is flexible and scala

grows with the demand on the system and yet reta

amenability to effective security. Security can be b

design in this architecture. To maintain consistenc

the layout already presented in Fig.1, the architectu
 The conceptual layout of next-generation healthcare 
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d into four inter-linked domains: the sensor and 

main, the edge cloud domain, the core cloud 

 the visualization domain. This  

entalization into domains assists in modular 

the security policy for the entire healthcare 

 brief discussion of the essential constituent of 

ains follows: 

teway: This gateway will be present in 

, hospitals, offices or homes. They link the IoT 

 the Edge cloud domain. Other devices in the 

 on their connectivity with the IoT gateway for 

ions like protocol and data conversion, and 

 to cloud gateways. There can be more than 

teways each connected to their own set of 

e IoT gateways connect to the service provider's 

ysical wide area network and can register with 

uds or directly with the core cloud. Some of the 

 are mobile-SIM based can directly connect to 

ication network and can securely register with 

or sending and receiving data. The gateways 

vice provisioning, data filtering, batching and 

, buffering of data, protocol translation, event 

ssing, and more. There can be more than one 

 with their own gateways connected to the edge 

 and core cloud gateways: These gateways are 

 and core clouds of the multi-cloud domains. 

gateways may provide data compression for 

fer, multiple bandwidth options and distribute 

hey provide connection to the IoT gateways 

s and collect telemetry information. These 

ay be physical or in the form of virtual routers 

 and main processors: These processors work 

ms of data from the devices or the gateways. 

rocessor has reasonable processing capabilities 

ave specialized hardware like the edge tensor 

unit. It has capabilities to train and use small 

ork models. The edge store is primarily for 

storage to keep the patients’ data while the 

is passing through the corresponding cell or 

eeded for patients’ present care. The main (core 

essor can carry out more sophisticated analytics 

interfacing multiple streams of heterogeneous infor

with the visualization domain.  

d) Machine intelligence agent: In addition to the

processor, the core cloud domain may provide spec

hardware (e.g., GPUs) and software that can p

historical data for intelligence on developing diseases

predicting re-admissions. 

e) Visualization: Visualization domain consists of 

tools used to visualize patient data and facilitate 

diagnosis, monitoring, and management. It conso

and synthesizes large volumes of data from m

sources to provide critical insights to the clinical s

makes patterns and relationships evident in large am

of data, which are not discernable in raw data or 

[38]. 

f) Access control: This provides various form

authorization, authentication, and accountin

connections attempted by people and devices. It pr

unauthorized agents from accessing stored or an

information from the edge or the core cloud zone. 

g) Provisioning, UI, and other tools: These tools g

domain manager a user-friendly interface to inject p

and provision cloud resources. 

3.3 Security architecture for the next gene

healthcare 

The overall security architecture that has been tak

consideration is shown in Fig. 3. The next-gen

healthcare systems will have security built-in by 

rather than being overlaid. This reduces m

provisioning and allows security to be consistent acr

domains and leads to more robust end-to-end securit

It also ensures high availability, patient 

conformance to regulations and improved domicilia

ambulance-bound patient care. The methods that w

evolved are consistent with the described s

architecture. 

In this work, we have focused on the developme

hierarchical deep-learning-based anomaly detection 

that will indicate if the dataflow between the IoT g

and the edge cloud or between the edge cloud and th

cloud has been compromised. The relevant aspec

discussed below:  

a) User authentication: Patients, paramedics 

ambulances, hospital medical and support staff all h

be authenticated securely and robustly to prote

patients and related data. For patients in the ambu

brain wave biometrics can be explored. Cryptog

authentication and authorization techniques combine

biometrics can provide a high level of system 

security. 

.

. 2 Architecture of the IoT-Cloud healthcare system 
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Fig. 3. The security architecture of the next-generation healthcare 

rest in the cloud: Confidentiality of data stored 

oints in the network can be protected through 

encryption and encryption key management. 

nnovative hashing algorithms can safeguard the 

 data. Public key cryptography can be used to 

h integrity and confidentiality. In time-sensitive 

 latency introduced by these techniques needs 

red.  

otion: This is the part that is of interest in this 

 from the physiological sensors are collected by 

teway and transmitted over the Internet or 

cess network to the edge cloud. Low latency 

rformed here, and for a more in-depth analysis, 

transferred to the core cloud. The processed 

 is sent to the doctor's screens to visualize the 

nd make an accurate diagnosis. 

tecture explained above helps to realize our aim 

g data in motion from any attack that threatens 

 meta-information or payload of the dataflow. 

d in Section 1, changes in the payload affect 

t are part of the meta-information. The main 

re is to use an innovative deep learning 

 find anomalies in the inter-domain streams of 

 indication of malicious intent. 

odel for the Healthcare Network 

t model essentially provides an understanding 

kers, attacks, and mitigation and is crucial in 

e security strategy. In IoT-Multicloud systems 

ners must rely on the convergence 

on technology (IT) and operational technology 

 and maintain infrastructures. The architecture 

reat model that we propose draw from the 

TRIDE architecture for clouds, covering threat 

poofing, Tampering, Repudiation, Information 

enial of service and Elevation of privilege, has 

y applied to cyber-physical system and is 

o our situation with suitable changes [41]. This 

model recognizes the trust boundaries and

vulnerabilities that come with transgressing domains

IoT-Multicloud systems. In critical operational tech

it is not only the data leak that is to be worried abo

also how theft and manipulation of data may impact

of the stakeholders. In situations, as presented by Cov

when the system is overstretched, vulnerabilities

have serious ramifications [42]. The compartmental

or zoning feature of our architecture has help

formulate an appropriate threat model. The ga

demarcate the domains. Thus, we have the IoT ga

the edge-cloud gateway, the core cloud gatewa

visualization gateway with their associated services. 

boundary separates each domain from the other con

domains. It is vital that the data flow author

techniques combined with biometrics can provide 

level of system access security. The data crossing th

boundaries should be protected against various ki

attacks [44].  

A data flow diagram (DFD) is an important t

represent processes (entities like gateways c

abstracted as processes), data stores (like the perm

store in the core clouds that stores patients’ historica

data flows (between the IoT, edge and core clouds b

concern) and entities that interact with the system. 

shows a diagrammatic representation of these elemen

DFD. Each of the elements in DFD are subject to

some aspects of STRIDE. 

4.1 Attack surfaces 

The attack surfaces at various gateways are des

below: 

a) The IoT gateway attack surface: The IoT gatewa

in places like ambulances, hospitals, offices, and 

We can see from the data flow in Fig. 4 that these ga

are at the perimeter of sensors and actuators doma

IoT gateway may combine the functionalities of a ro

processor, a protocol and data converter, a 

1. Encryption

2. Neural network for 
data in motion

1. Encryption

2. Hierarchical deep 
neural nets with 
layer reuse for data 
in motion

1. Authentication 
Authorization

2. Access control

3. Neural network 
for data in motion

1. D2D Comm. Protection –
physical layer, encryption

2. Denial of Service and device 
capture

3. Authentication

4. Access control - biometrics
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controller, a data flow manager, and a sessions manager. 

There are two attack surfaces one facing the IoT devices 

and the oth

are often ta

severe effec

gateways. 

 

 

Fig. 4
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er facing the edge cloud zone. These gateways 

rgeted for intrusions. These intrusions can have 

ts as there is no redundancy built into these 

. DFD for Healthcare Dataflows and Trust Boundaries 

-cloud gateway attack surface: The edge cloud 

re instantiated on physical- or virtual-servers. 

t flows from one or more IoT gateways (in 

 directly from the devices) and regulate access 

ties of control, analysis, and storage in the edge 

obile edge cloud gateway is near the cellular 

 therefore, physically less accessible. The 

s two attack surface areas, one facing towards 

teways and the other towards the core cloud 

-cloud gateway attack surface: The core cloud 

trols access from the hospital/ambulance zones 

ctly or through an edge cloud gateway. It also 

e visualization domain and other external 

the healthcare system like insurance agencies, 

 suppliers, and billing services. Both the edge 

e clouds usually have interconnection with the 

ing the cloud domain more vulnerable. 

rs and attacks 

s: These are internal or external malicious 

 attempt to mutilate or alter the flow of data in 

e threat could be from organized crime, nation-

ktivists, business associates, skiddies, and 

nsiders. In this threat model, we assume that 

have unlimited resources and time, while the 

anization has limited resources, and thus, needs 

thods to counter attacks [43]. 

Attacks that target confidentiality, integrity, and 

(CIA) are major security issues for cloud based 

rsaries could maliciously exploit several 

ies in many forms. They can carry out a variety 

ike DOS to prevent patients' access to devices, 

medications. More severe attacks include capturing 

devices, ransomware, and advanced persistent 

(APT). The attackers, also referred to as cybercrim

evade detection by using multiple tactics, tools, and 

in their attacks. Their techniques can change tem

and spatially.  

It is essential to recognize the kind of attacks that 

protecting the system against. In our system, w

concerned with any intrusion that alters the dataf

terms of the meta-information or payload. This will h

if the dataflow is disrupted in any way. In our DFD 

4, the processes, dataflows and datastore are subject

following threats:  

i) Spoofing: This is a man in the middle attack wh

intruder fools the source to believe that it is a leg

destination. Spoofing attacks can help attackers to cr

trust boundaries and cause data theft or deletion. 

masquerader intercepts, partially or fully modifi

dataflow, then this is of concern to our system. A ph

attack is a glaring example of spoofing that can

healthcare systems. 

ii) Tampering: Tampering is a serious infringement

healthcare system in which an attacker alters the da

and thereby changes the values of the patients' biom

or the meta-information of the dataflow (e.g., packe

rate). Examples of such attacks for the IoT domain i

packet injection or packet crafting to change 

metadata. An attacker may tamper with the setti

software of a device, potentially causing it to malfunc

iii) Denial of Service (DoS): IoT devices are ge

constrained in many ways and cannot deploy sophis

security mechanisms. These devices can be floode

unsolicited traffic and rendered inaccessible for g

traffic. If devices are listening for inbound conne

then an attacker may open many connections a

service them. A malicious actor can also spoof a num

these and use them to launch distributed DoS attack 

targets in the edge or cloud clouds. In healthcare th

mean that patient devices like a ventilator or 

devices for service like oxygen supply can be re

inoperable.  

iv) Information Disclosure: Constrained device

have simple security like a single PIN or pas

Sometimes they just trust the network and allow 

devices on the same network. Active reconnaissanc

enable the attacker to obtain information about the

and then cause remote attacks. SQL injection atta

cause an information disclosure attack as it can 

information about the data in the system. 

v) Elevation of Privilege: A user with limited pr

assumes the identity of a privileged user and

administrative rights. With higher privileges, the a

can cause an exploit attack. It can access gatewa
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change information flows. 

vi) Repudiation: An attacker can log data to wrong files 

or change d
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ata in the name of others. 

ware: Ransomware attacks on hospitals are 

nd remain a growing concern. Not only they 

cial drain on financially constrained medical 

ut also cause disruptions in provision of 

althcare to patients. 

ed Persistent Threat (APT): This is an 

tack in which hackers gain undetected access 

can spend time gaining valuable inside data and 

ng of the systems before launching a targeted 

 hybrid systems like healthcare, consequences 

an manifest in many forms [45]. Some of these 

d below:  

ontrol and safety impact: Loss of control in the 

 or any of the clouds could potentially bring the 

ivities to a halt and pose a threat to health and 

ople in the affected areas. 

l impact: There is a recovery cost for restoring 

o the pre-attack state and payment of ransom in 

. Then there is indirect cost of malfunctioning 

ss of control of life sustaining systems and 

venues. There may also be litigation charges, 

e and payment of damages to patients.  

tion to operations: A major cybersecurity 

T can severely affect the ability to supply goods 

. This could impact the organization's ability to 

ts mission and result in the loss of credibility 

ers. 

f trust: A breach could result in lost reputability 

m the public, patients, and investors. 

posure: The loss of data in operational 

settings can expose personally identifiable data 

, patient medical and financial records and 

archers’ intellectual property.  

n: In the described architecture security is built 

s far as the dataflows are concerned, we need 

 of both seen and unseen attacks. OT networks 

oT domain and the cloud network are separated 

ndaries which needs to be protected. As far as 

loud resources are concerned, a ‘zero trust’ 

ld usually be employed. Patients and medical 

ls are all authenticated when they access these 

or patients, who are comatose, body’s electrical 

ay be used for identification. Partner 

s like suppliers, insurance companies, 

, labs may remotely access the IT-OT 

system. This further blurs the IT-OT 

n and expand the attack surface providing new 

 for attackers [46].  

5.  Merged Hierarchical Security for Data in Moti

Theoretical Background, Methods and Procedure

In this section, we discuss our work on a distribut

hierarchical deep learning solution to protect the data

from any adversarial attack that mutilates or alters th

stream, including its meta-information, in any wa

[48]. Given the multi-cloud hierarchy, we focus on th

in motion into the edge clouds and from edge to th

clouds. 

5.1 Design aspects of the security system 

We have taken note of the recommendatio

International Standards Organization’s ISO 27005 

design. These recommendations describe the process

following steps – establishing context, identifyin

analyzing risk and evaluating and treating them [49].

as their functionality is concerned, security system

expected to monitor and report intrusions continuous

also important to have low false negatives so as not t

out on serious attacks and low false positives to

procedural expenses on false alarms [50]. 

In our work we use proven techniques of threat a

and vulnerability assessment based on IT-OT philos

and use deep learning to create a hierarchical mult

system that would meet our aims set forth in Sec

Keeping in view that a centralized IDS in a par

gateway would have a limited zone of protection, w

decided on a distributed solution that works in th

gateway, edge clouds, core clouds. The proposed 

incorporates novel techniques to speed-up trainin

retraining of complex cloud models working on

dimensional and high-volume data. This makes the 

suitable for real-time and near-real time applications.

5.2 The choice of the deep learning system 

In our target IoT-Cloud-VNS architecture, the 

that we propose has to deal with numerous marke

interaction patterns across a large number of senso

servers constantly during operation. The data produ

such a system is multi-dimensional, voluminou

contains underlying patterns that do not become e

with traditional statistical analysis. Researchers

applied machine learning to security in healthcare s

in many forms [50]. Classifiers like SVM, Decision

(DTs), Naïve Bayes, K-Nearest Neighbors (KNN

Random Forest (RF) have been used. It turns o

classical machine learning is not particularly well sui

the application under consideration because of its in

complexities. We are dealing with unknown attac

which training data will not be available. Machine le

models trained only on normal data do not generaliz

These methods also usually have relatively high
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positive rates for detection [51], which, in healthcare 

systems, may cause the risk of overmedication or 
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 procedures. 

rning, on the other hand, has been found to be 

andling large volumes of labeled and unlabeled 

es use of many layers of non-linear processing 

eful features from a high dimensional dataset 

se these features to end up with a rich set of 

ly selected features. It can handle missing 

can use metadata effectively. These properties 

lass of methods high power to analyze and 

 in which features are related to the outcome in 

ay.  

seen in Section 2 that deep learning models can 

ter than shallow machine learning models [15]. 

nt successes have renewed interest in deep 

] [36] [52]. As these improvements seem to be 

across a large variety of domains discussed 

have viewed this as a motivation to use deep 

the healthcare domain. We tackle the major 

 faced in using deep learning, that is, the high 

 dimensionality of the training data. We have 

ep learning techniques that improve training 

e giving high accuracy.  

eural networks – stacked autoencoders 

a brief description of DNNs with an emphasis 

For a more detailed treatment, readers are 

[53] [54]. A neural network has an input layer, 

 hidden layers, and an output layer. Each layer 

d to the next layer, fully or partly. When the 

hidden layers is more than one, the resulting 

referred to as a DNN. As the data passes 

 layers, the weights of the previous layers are 

sing a weight matrix to obtain the weights of 

yer. Each hidden neuron has an activation 

g., Sigmoid or Rectified linear unit (RELU)) 

ines the activation level of the neuron. The 

eed-forward network (FFN) since the output of 

 used as input to the next. A loss function, e.g., 

e error (MSE) or cross-entropy, gives the error 

 prediction and the actual value. A technique 

propagation can be used to reduce these errors. 

re fed back from the output through the hidden 

 input layer to fine-tune the weights. 

e used a particular type of DNN called 

 (AE) shown in Figure 5. The middle layers, 

 input and the output layers, are hidden layers 

not visible from input or output and are internal 

l network. The innermost hidden layer has the 

r of nodes and is also called the code. The code 

a condensed form all the intelligence derived 

puts. Our example neural network in Fig. 5 has 

ts (bias unit not shown), 5 hidden units, and 7 

. The output of each layer is directly connected 

 units of the next layer. Each input xi, xi ∈ Rn, 

when it is not activated. Activation can be based

activation function like sigmoid or RELU. The 

trained to compress into a lower-dimensional code an

reconstruct the output from this representation. T

tries to learn a function hW,b(x)=f(Wixi+b)≈x where 

the weights and b the biases.  

 Fig. 5. Representation of a simple autoencoder 

 

A sparse autoencoder (SAE) has a sparsity par

that restricts the code size required for reconstr

Sparsity enforcement results in only some of the neu

a hidden layer to be active. In our work, we use s

SAE (SSAE), which consist of multiple layers of 

This configuration gives rise to deep neural networ

can learn and model non-linear and complex relatio

A representation of the SSAE is shown in Fig. 6. 

 The pre-training of such an encoder can be done

in a layer-wise manner or end-to-end. In the laye

training, we consider each set of two adjacent layer

AE. We start with the weights w between the input a

first layer and get w(1) such that the loss function L

is minimized where L(x, z(1)) = ½ ||x-z(1)||2 is the MS

output at the first hidden layer is z(1) = f(w.xT), wh

superscript T denotes transposition. 

For the second hidden layer, the z(1)
 vector becom

input and z(2) vector the output. This layer is traine

that the MSE between z(1) and z(2) is minimized, i

loss function L(z(1), z(2)) = ½||z(1) – z(2)||2 is minimize

output vector z(2)
 = f(w(1).z(1)T). Where the supersc

denotes transposition. This continues until we reach t

hidden layer, which is connected to the output layer. 

We continue to produce the output vector like w
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Fig. 6. A stacked autoencoder 
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have done so far. Thus, for n hidden layers  
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e training samples are available in the form of 

feature vectors, output vector), we can use these 

fine-tune the pre-trained SSAE. We initialize 

 connecting the nth trained layer to the output 

t predictions y' and adjust all the weights such 

||2 is minimized. Here, y is the ground truth 

g samples (x, y). This last step is the refinement 

weights. The overall cost function to be 

ill have a regularization term added to the loss 

ich calculates the MSE. Thus, the cost function 

 form: 

 (1/n) ∑i (MSE) + λ.ΩW + β.Ωsparsity 

term is the MSE averaged over all the training 

he second term adds a regularization term on 

 to prevent the regulariser from becoming too 

coefficient λ determines the influence of this 

third term is the sparsity regulariser (with 

β), which imposes sparsity constraint on the 

m the hidden layer. A commonly used 

n is K-L (Kullback-Leibler) divergence (DKL), 

a large value if the activation level of a neuron 

 desired level.  

hts and biases associated with each SSAE are 

arameters. Some hyperparameters, like the 

 layers, the number of neurons and the 

of the loss function, must be suitably set to 

d result. Table 1 shows some of these 

eters and their typical values in this work. 

Table 1. Hyperparameters of SSAE 

Description 
Typical 

Value(s) 

yers 
Decides the depth of the neural 

network 

4, 12 

urons in the all 
Decrease from input to the code 

and then symmetrically increase 

till the ouput layer 

60, 180 

Innermost layer with most 

compressed representation of 

inputs 

30 

n 
In this work we generally use 

mean square error 

 

Regularization factor 
0.000000

01 

Sparsity regulariser 0.2 

Adam optimization decay rates 0.8, 0.9 

tial to set these hyperparameters carefully such 

ermost compressed layer learns the most useful 

 their combinations. For more technical details 

the readers are referred to [55]. 

is carried out according to the flowchart given 

 make the training process effective, we choose 

 layer of the DNN at a time using unsupervised 

tializing a network with small random weights 

rmly between -0.1 and 0.1), the network is 

fall into a trivial, symmetric local optimum. The 

on error indicates whether the data flow is 

reconstruct information about the normal data flow

low root MSE (RMSE) while failing to do 

anomalous data, which the SSAE has not 

encountered. 

The data set is divided into a training dataset and 

more test datasets. A training example is selected fr

training dataset, and then the values of output are c

for their quality of reconstruction. If the chosen indic

error, e.g., RMSE, is consistently below a threshol

the training concludes. 

 
Fig. 7. Layer-wise training of the SSAE 

The trained model is then tested with the test dat

is a common practice among the developers of 

network models to "cross-validate" the network on t

dataset periodically during training and to save the n

weight configuration meeting one of two criteria: 

network with the lowest error on the training dataset

the network with the lowest error on the test datase

latter technique is often used to prevent the networ

overtraining because networks are prone to overfittin

The overall duration of training is often expres

terms of the number of epochs required to reach a

minimum [56]. We will discuss the settin

hyperparameters in the evaluation section. 

5.4 MUSE: The hierarchical merged model with

reuse 

The aim of MUSE is to provide security for d

motion from IoT domain to the edge clouds and fr

edge clouds to the core cloud. If we consider the s

architecture, discussed in Section 3.3, MUSE f

specifically on the perimeters of the edge and core 

Based on our threat model, we look for adve

intrusions that change data flows, like those cau

exploits, active reconnaissance, SQL injection, de

service, tampering, device resetting, and device tak

The main concern here is to use deep learning 

(2) 
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whether the inter-domain streams of data have been 
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d on the meta information extracted from the 

7]. MUSE works in the unsupervised mode and 

onstruction error of a data point to differentiate 

rmal and abnormal data. As explained in the last 

 loss is represented as the residual sum of 

d the error of reconstruction is represented as 

The main objective then becomes the reduction 

function, or the RMSE by training the model 

in the forward direction and fine-tuning using 

ack-propagation. 

ammatic representation of the distributed 

 structure of the SSAE based MUSE intrusion 

iven in Fig. 8. In this work, we have restricted 

on to the data flowing into the edge clouds and 

ud. The model is backward extensible to IoT 

nd also to private clouds if they exist in the 

chy.  

 8. The hierarchical autoencoder based MUSE model 

of the concept of merged models in MUSE 

 training time. A merged model at the core 

aggregation of the edge models done in such a 

 training of layers at the edge can be reused at 

ud. Fig. 9 illustrates how the edge models are 

reate a core cloud model. The dataflows from 

main passes through the meta-data extractor, 

cts network-flow related features like the packet 

nt, inter-packet times, source, and destination 

he aggregator is a construct implemented in 

t assembles the deep learning model in the core 

mbining trained layers from the edge clouds. 

ator provides the flexibility of taking all the 

rs of the edge clouds or selected layers to 

e outcomes. A combination of features from 

eta-data are passed through the SSAE at the 

 in the service area in which the IoT equipment 

formance with the architecture of the network 

arlier, the SSAEs are arranged hierarchically 

1 or small, 1-2 layer AEs at the IoT gateway, 

edium, 3-5 layer AEs at edge clouds and Level 

Es with more than ten layers in the core clouds. 

testbed created in the lab at Washington University

Louis (Fig. 13) [43].  

 
Fig. 9. The merged model 

It is worthwhile to mention that the use of the m

model that allows for reuse of the trained layers is di

from transfer learning. The latter primarily uses som

known trained model for a new problem where the m

of the same type and size. The MUSE model h

flexibility of using parts of the edge cloud SA

construct an SSAE at the core cloud that will gener

of a different size. 

5.5 Design and implementation 

The operational basis of the the MUSE system

consume markers from the IoT domain, which ge

data from sensors and other devices 24x7. This d

consists of patients being monitored in ambulances

on way to hospitals, patients under monitoring at ho

offices, patients both in critical and routine car

system consumes the high dimensional and high 

data to detect any indication of attack on the integ

data flowing from IoT domain into the cloud doma

among the clouds. An efficient system can weed out 

fast and with high accuracy so as to let the medica

provide the best care without unduly worrying abou

alarms. As the dataflows pass through the edge

gateways, the extracted meta-information is passed 

the SAE executing in edge processors. In the case

normal traffic flow, the meta-information is recons

with RMSE below the preset threshold. In cases wh

traffic consisting of patient data has been intruded

the meta-information about the traffic flow is affec

this case, the meta-information can no long

reconstructed with low RMSE, and the system in

intrusion.  

The edge cloud models are trained on examples co

from their respective coverage area. The core cloud

is constituted from the trained layers of edge cloud

model is further trained using the data from its ow

not overlapping edge cloud areas. Fig. 10 shows the 

workflows for initial training as well as during 

operation. 
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Fig. 10 Training and Operational Workflows 

 1 gives an idea of creation, configuration and 

edge clouds [52]. The parameters used are 

nd various setting were tried for good outcome. 

as been implemented in Keras and TensorFlow 

dge-cloud models as shown in Fig. 11.  

 ncoder edge cloud 1 b) Autoencoder edge cloud 2 

(sae2) 

(c)Autoencoder edge cloud 3 (sae3) 

Fig. 11. Three edge cloud autoencoders 

egator in the simple mode merges all the layers 

models and produces a composite model (Fig. 9 

. Algorithm 2 gives a simple implementation of 

n. The merged model has layers taken from the 

. The aggregator can take all or merge layers 

o improve the outcome. 

ig. 12 A merged model with all edge layers reused 

 

 

Fig. 13 shows merging of layers from different edge 

to form the core cloud. We shall compare the training

of core cloud neural network models created by r

trained layers from edge cloud neural networks with

that do not use trained layers 

Split X into Xtrain (80%) and Xtest (20%) 

Extract input dimension from shape of Xtrain 

Number of edge clouds = ne  

Number of layers in each edge cloud = le 

Encoding dimension =m 

Create edge cloud models 

for edge_cloud in range 1 to ne  

 define input layer 

 for layer in range h=1 to le 

        if h<le/2 

define encoding layer h 

set activation function  ‘relu’ 

set regularization factor  10*e-8 

set sparsity factor 

        elseif 

   define decoding layer h 

   set activation function  ‘relu’ 

            endif 

      endfor 

endfor 

Configure model 

for sparse autoencoder m = 1 to ne 

create autoencoder with input layer m and output lay

compile the model 

set optimization  ‘Adam’ 

set loss  ‘mean-squared-error’ 

set metric  ‘accuracy’ 

endfor 

Train model 

for sparse autoencoder m = 1 to ne 

 specify test data 

 set epochs  100 

 set batch_size  64 

 specify validation data 

endfor 

Algorithm 2 Core cloud model creation and training 

… 

Initialization and input definition 

… 

Creation of merged core model 

for edge clouds 1 to m 

 select input layer 

 select output layers 

endfor 

define model output from merged output layers 

create merged models from selected input and output layers

Configure merged model 

… 

Train the merged model 

… 

sae1

x1
'

sae2

x2 x2
'

sae3

x3 x3
'

X'

x1

x2

x3
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tational complexity of merged model 

ing complexity of neural network models, it 

ke some simplifying assumptions. We assume 

mber of neurons in each layer and the number 

ual to number of neurons.  

rd propagation training step, we have matrix 

ons and computation of activation function. The 

matrix multiplications nmul = nlayers . n3 in other 

has the asymptotic run time of O(n4). The 

unction is evaluated elementwise which gives a 

of O(n).O(n) = O(n2). The total forward 

 runtime becomes O(n4+n2) which is of the 
4).  

ch also involves back propagation through the n 

calculation of error, we have O(timeerror)= (n4) 

lculating weights we have O(timeweights) = 

+ n3. Now taking n gradient descent 

 we have overall complexity as O(n5) [58] [59]. 

lynomial complexity that will lead to long 

nvergence times. It turns out that back 

 is much slower than forward propagation. This 

uestion whether the complexity of the model 

ced to limit the training time at the cost of only 

antial performance loss. The answer is ‘yes’. 

y our method reduces the computational 

is by reducing the number of trainable 

 The baseline model with 8 fresh layers i.e., not 

 any training example consists of 31521 

rameters. Our merged model with 12 layers 

24737 trainable parameters reduced by used of 

rs from the edge cloud models. We run these 

chs which with 8000 training examples and a 

of 128 comes to about 12500 steps. This 

f parameters though merged model reduces the 

e drastically. We see these results in Section 

on and Results 

ction, we first discuss the test datasets, two of 

cly available and the other that has been 

y the authors. Then, we use these datasets to 

 effectiveness of the proposed model and draw 

6.1 UNSW-BOT-IoT and UNSW15 Dataset 

The BOT-IoT dataset has been made available 

UNSW Canberra Cyber Center and updated in Nov

2018. It was created using a realistic network enviro

with simulated existence of IoT devices in the 

network. Commonly used older sets like KDDCup19

NSL-KDD lack IoT generated traffic and do not tak

of new types of attacks. In the selected dataset, the 

consists of three parts: network platforms, simulat

IoT services and extraction of features and fo

analysis. Normal background traffic is constantly gen

and attacks were interspersed. The enviro

incorporates a combination of normal and botnet 

The dataset includes five botnet attack types - DDoS

Service Scan, Keylogging, and Data exfiltration atta

total of 48 features have been included. UNSW15 fr

same organization has a total of 48 basic features.

nine attack types – DDoS, DOS, Service Scan, Keyl

and Data Exfiltration A part of the dataset (varyin

6,000 to 10,000 records out of millions of av

examples) has been used in various runs with 80:20

of training and test examples. Table 2 gives some 

features of the BoT_IoT dataset. The full dataset 

seen in [33] and [64]. 

Table 2. The feature set of the BOT-IoT dataset 

Feature Description Feature Descriptio

saddr Source IP address spkts 
Source-to dest

packet count 

daddr 
Destination IP 

address 
pkts 

Destination-to-

packet count 

pkts 
Total transaction 

packet count 
srate 

Source-to-desti

packets per sec

bytes 
Total transaction 

byte count  

N_IN_Con

n_P_SrcIP 

Number of in

connections 

source IP addre

dur 
Total duration of 

the record  
min 

Minimum dura

aggregated reco

Proto  

 

protocols present 

in network 
max 

Maximum dura

aggre- 

gated records 

rate  

 

Total packets per 

second in 

transaction 

 

attack  

 

Class label: 

Normal 1 for 

Traffic 

flags 

number  

 

Numerical 

representation of 

feature flags 

state 

number 

Numerical 

representation o

feature state 

6.2 Data Generated on The Testbed 

The BOT-IoT dataset consists of meta-infor

extracted from the flows from many IoT devices. 

this will be indistinguishable from that generated 

healthcare systems, we created a healthcare-specific 

in the testbed at Washington University in St. Lou

testbed set-up shown in Fig. 13 has been adapted from

. 13. A merged model with selective layer reuse 
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Fig. 13. Healthcare testbed for dataset generation 

Domain: Consists of a set of health IoT sensors 

ino Mega based microcontroller as the gateway 

T sensors. Because of the absence of any Wi-Fi 

t port on this microcontroller, an external 

ield was attached. The following sensors have 

galvanic skin response, which measures skin 

ue to stress, pulse oximeter for measuring the 

l in the blood, and body temperature sensor. 

ork Domain: An Ethernet switch to which the 

ller and three servers were connected, all 

as one private network with each device 

rivate IP. One of the servers was used to mirror 

traffic coming to the network from the IoT 

he computer through which attacks were 

rved as an insider attacker. 

alization Domain: A server with Ubuntu Linux 

ystem was used to visualize the patient's data 

rough the sensors described above. The sensor 

the meta-information could be visualized and 

s for processing. 

 A server with the Kali Linux operating system 

o cause malicious activities like sniffing and 

he dataflows. 

al and attack datasets have the features given in 

Table 3. Features in the IoT testbed dataset 

escription Feature Description Feature Description 

urce 

ddress 

DIntPkt Destination 

inter packet 

arrival time 

(ms) 

Load Bits per 

second 

estination 

ddress 

SIntDist Source inter 

packet arrival 

time 

distribution 

Loss Packets 

transmitted or 

dropped 

urce Port # DIntDist Destination 

inter packet 

arrival time 

distribution 

sMinPktSz Min packet 

size for 

source traffic 

estination 

rt # 

SIntPktAct Source active 

inter packet 

arrival time 

dMinPktSz Max packet 

size for 

source traffic 

urce-to-

stination 

te count 

DIntPktAct Destination 

active inter 

packet arrival 

time 

pLoss Percent 

packet 

transmitted or 

dropped 

SAppBytes Source to 

destination 

application 

bytes 

DstJitter Destination 

jitter (ms) 

pDstLoss Per

des

pac

tran

or d

DAppBytes Destination to 

source 

application 

bytes 

sMaxPktSz Max packet 

size for source 

traffic 

Dur Du

flow

SrcLoad Source bits/sec dMaxPktSz Max packet 

size for dest. 

traffic 

Trans Ag

rec

DstLoad Destination 

bits/sec 

DstGap Destination 

bytes missing 

TotPkts Tot

tran

pac

SrcGap Source bytes 

missing 

SIntPkt Source 

interpacket 

arrival time 

(ms) 

TotBytes Tot

tran

byt

6.3 Implementation platforms and software tools use

The edge and core models have been tested on a 

of hardware using several software tools and datase

code implementing the models has been develo

Python on the Anaconda/Spider platform. Some parts

codes were ported to MATLAB and tested using th

in deep learning library to verify the results

hierarchical merged model with three edge clouds a

core cloud were run on a Mac with 8 core CPU as w

Windows machine with GPU Nvidia GTX 1080. 

the review process the models were also trained and

on Google Colab cloud platform using TensorFlow v

2.x and Keras. The Colab platform offers a variety of

and GPUs including Nvidia K80s, T4s, P4s and P100

testbed described in Section 6.2 was used to ge

normal and attack data. Normal data emanating

sensors in the IoT domain were recorded over a num

sessions with different volunteers. The data is anony

with no means to trace back to the individuals inv

Attacks were simulated using a Kali driven system.

present evaluation, the meta-information is extracted

Argus Network Management System [41] and ranked

the Weka machine-learning tool [42]. In the future

automatic extraction will be integrated with the syste

6.4 Results 

The results discussed in this section are for the t

of neural networks at the edge cloud and a compar

training of the core cloud neural network with and w

layer reuse and efficacy of the system in filteri

attacks. 

a) Training and Testing of SSAE at the Edge Clouds 

The configuration discussed in Section V

represented in Fig. 5 and 6 was used as the ba

training and testing. The generated dataset was rando

and mutually exclusive parts were selected to train th

in the three edge clouds. All the examples in the t
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e models did not see these datasets in the 

se. Some examples, with known attacks, were 

om the training and test datasets for evaluation 

 performance. 

ing and testing results are shown in Fig. 14a to 

 be seen from the figures that the training 

are excellent, and the model generalizes well. 

nes represent training losses, while the green 

sent test losses. Each epoch represents a 

 of one forward and one back-propagation 

the complete dataset through the SAE. As the 

pochs increases, the model gets trained, and the 

 down. The losses of the models on the test data 

 to their low value close to the training losses in 

s of training. 

 and testing of SAE at the core cloud. 

ing and testing results are shown in Fig. 15a for 

model in the core cloud. Fig. 15b shows results 

ged model with cross-training. In the latter, the 

re swapped among themselves. 

Train-loss = 4.697, Test-loss = 17.595,  

rain-accuracy = 0.993, Test-accuracy = 0.995 
(a) Edge cloud 1 

Train-loss = 8.526, Test-loss = 8.661,  

rain-accuracy = 0.986, Test-accuracy = 0.985 
(b) Edge cloud 2 

Train-loss = 7.418, Test-loss = 6.715,  
rain-accuracy = 0.993, Test-accuracy = 0.992 

(c) Edge cloud 3 
14 Training and Test Performance of Edge Clouds 

 

Train-loss = 4.517, Test-loss = 6.151 Train-accuracy = 0.989, 

accuracy = 0.990 

(a) Core cloud merged model 

 

Train-loss = 2.1575, Test-loss = 4.1718,  

Train-accuracy = 0.992, Test-accuracy = 0.993 

(b) Core cloud merged model (cross-trained) 

Fig. 15. Training and Testing Results 

It is seen from Fig. 15a and 15b, that in both cas

model takes a substantially smaller number of ite

and, consequently, less time, compared to edge

training. It is also seen that the cross-trained edge m

result in somewhat lower training time for the core

model (the result stabilizes in less than four epochs 

five epochs). To compare the edge cloud and the core

training times, we present Fig. 16 and Fig.17. F

shows the training and validation losses and th

between the two, at the edge cloud, with an incr

number of epochs. It is seen that the performance sta

between 35 and 40 epochs for the edge clouds f

selected dataset. Fig. 17 shows the training speed 

merged model in the core cloud. It is seen that beca

the use of already trained layers and from the edge 

and the reduction of trainable parameters at the core

 
Fig. 16. Edge cloud model training 
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the model in the core cloud stabilizes between 6 and 8 

epochs. This is a significant improvement in the speed of 

training of t

of layers tra
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results that 
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he model in the core cloud because of the reuse 

ined in the edge clouds. 

uns with different data, it is seen from the test 

the model generalizes well. The test losses were 

her than the training losses but after a few 

hey settle down close to train losses. Test 

are high and close to those obtained during 

h for edge and core clouds. Occasionally 

happens which manifests as better test 

e compared to train performance. This has been 

controlled by using appropriate regularization 

 over-training the cloud beyond convergence 

epochs.  

be apt to discuss the hyper-parameter settings 

the models. We use Adam optimizer, which 

stochastic gradient-based optimization. It 

daptive learning rates for different parameters 

ates of first and second moments. The 

 decay rates (ß1 and ß2) for the moments go as 

eters. We choose learning rate = 0.001, ß1 = 0.8 

 and 0.999 according to the guidelines in [48]. 

s were divided into test and train datasets in the 

 The loss function used was the mean square 

ctivation functions used were 'tanh' or 'RELU,' 

he best performance. The batch size for training 

s 100. Several experiments were conducted to 

he most appropriate number of hidden layers 

ber of neurons per layer for each edge cloud 

 cloud. 

time analysis 

n 5 we saw a naïve analysis of computational 

of neural network model. We saw that the 

plexity with forward and backward is of the 

n5). This denotes high complexity which goes 

t with the number of layers, number of neurons 

ning examples. For the kind of SAEs that we 

he theoretical training time with greedy layer 

researchers have suggested innovative ways to impro

accuracy of prediction but very few have written ab

training time of their models. One of the few pape

discuss training times of their models is [61]. The 

performed baseline experiment with 20 epochs o

training of RBM followed by 10 epochs of fine-tun

backpropagation. The depth of the model is 5 layer

the biggest dimension as 1000 and activation func

sigmoid. The training and test datasets have 60,00

10,000 examples respectively. Layer wise training 

epochs takes 3 hours, 14 minutes and 43 seconds

backward propagation takes 2 hours, 16 minutes a

seconds a total of 5 hours 31 minutes and 42 seconds

their synchronized pre-training the total time take

hours 4 minutes and 53 seconds. 

In our case the edge cloud models are trained in a 

layer wise manner take about 125 seconds for 4000 t

examples and 1000 test examples on M400M Quadr

on an Intel Xeon v5 CPU. The depth of these mo

kept at 4. These models take 35-40 epochs to train

unmerged core model has depth of 8 and takes num

epochs of the same order to train without the merged

technique that we have proposed. By utilizing the 

layers from the edge cloud, we reduce the num

epochs to 5-6. The epochs are longer because of the

complexity of the model but the model still takes les

than with unmerged model. The baseline 8-layer 

with layer configuration (180,90,60,30,30,60,90,18

31521 trainable parameters takes on an averag

seconds for 7000 training examples and 1500 test ex

run for 100 epochs. The merged model much larger w

layers, partly constructed by using trained layers fro

edge clouds. The trainable parameters were redu

27,275, After several runs, we see that the merged 1

model takes less time than even a much smaller 

unmerged model. Table 4 summarizes these results. 

Table 4. Comparison of unmerged and merged models

 8 Layer unmerged 

model 

12 layer merged m

Layers 180,90,60,30,30,60,9

0,180 

60x3*,60x3*,30x3*

Time for 100 

epochs 

1 hour 24 minutes and 

30 seconds 

1 hour and 2 minute

* Trained layers from edge clouds 

 

A comparison of training in both cases is given in 

17. The radar chart in Fig. 17 clearly brings o

reduction in training time of merged model as comp

the unmerged model. Through several run it is seen t

merged models give on an average 26.2% reduc

training times.  

Fig. 17. Core cloud model training 
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ance of the MUSE system in filtering out the 

 

s the intrusion detection performance of the 

em, we used the attack both from the UNSW 

well as our testbed. We used attack cases that 

alter the metadata information of the dataflows. 

, fuzzers that break applicatios by injecting 

a, backdoor that may grant remote access and 

rmal traffic to flow, DOS attacks that affect 

network resources, reconnaissance traffic to 

vices and end-devices. The test data thus 

carefully chosen attack and normal records. We 

rough the trained models and enumerate results. 

that the anomalous data produce very high 

 it is easy to fix a threshold value that decides 

 data has been affected by malicious activity. 

on matrix for 10 out of several runs is given in 

hese random runs give a low average false 

te of 0.5% and unseen attack detection accuracy 

 the range 95% to 100%. This is a marked 

t when compared with the previously unseen 

ction accuracy of 92-93% achieved with the 

odel.  

Table 5. Confusion matrices for attack detection 

 

 

Attack 

as 

Normal 

(FN) 

Normal 

as 

Attack 

(FP) 

Normal 

as 

Normal 

(TN) 

Total 

vectors 

Accuracy 

(%) 

  0 19 355 574   96.69 

  0  0 511 699 100.00 

 0 3 232 331   99.09 

 16 0 184 292   94.52 

 0 0 280 380 100.00 

 17 0 243 340   95.00 

 1 1 287 399   99.50 

 1 1 100 129   98.45 

 12 0 398 537 97.76 

rds taken in the test dataset for the attacks 

above were rotated from the large UNSW 

ultiple runs were made with the threshold that 

st performance. In our case a threshold of MSE 

this demarcation point. Table 6 gives various 

the average of many runs with this threshold. 

being labeled at attack triggers investigation, which m

expensive, precision provides a good performance m

Precision being high at 96.5% assures that the m

good at detecting actual attack incidences as attacks

the cost of false negatives is also high in our case w

have comfort in high recall (or true positive rate) w

98.6%. The false positive rate (FPR) is 0.64%.  

score of 97.5% indicates both low false positives an

negatives are low and recall and precision are

balanced. 

Table 6. Attack detection performance 

 Actual 

 
Positive Negative 

Total 

P
re

d
ic

te
d

 

 

Positive 56 2 58 

Negative 1 218 219 

Total 57 220 277 

 
    

 TPR, 

Recall 0.9859   
 

FPR 0.0064   
 

Accuracy 0.9920   
 

Precision 0.9655   
 

F1-Score 0.9755   

 

7. Comparison with other works 

Comparative results have been given in Table 7. R

to 3 are from works reported in the years 2020 and

The authors have proposed modified versions 

standard deep learning models like CNN, LSTM and

In [18] the authors applied CNN to cloud computi

trained with CICIDS2017 dataset to achieve 9

accuracy. In [19] the authors present a data offl

mechanism with cyber-attack detection (DLTPD

involving barnacles mating optimizer (BMO-DBN0

accuracy of 97.65%. In [20] authors propose an im

LSTM model to achieve 98.5% training and 95.1

accuracy. Rows 4 and 5 show shallow (baseline) an

learning results from the work in [50]. Autho

improvement over the baseline SVM and best accura

NSL-KDD of 97.11%.  In row 6 we summarize the 

achieved by authors in [21]. The authors have worke

modified LeNet-5 model to achieve an overall accur

97.53% with KDDCup99 dataset. Row 7 and 8 co

results of the work in [22] in which the authors p

Restricted Boltzmann Machine-based clustered IDS

IDS) in WSN environment using KDDCup99. In row

authors in [23] use BLSTM RNN and achieve

accuracy with UNSW15 dataset and higher with

20	
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3	

4	

5	

6	

7	

8	

9	

1	



Journal Pre-proof

 19 

datasets. In the work at row 10 the authors use H2O deep 

learning based binomial and multinomial models with 

NSL-KDD 

dataset [24]

SAE with 

97.9% and 

AE based S

obtain 84.96

deep neura

accuracy w

classificatio

lower tha

KDDCup'99

 The last 

trained with

over many 

than the com

 Refe

rence

1 [18] 

2 [19] 

3 [20] 

4 [50] 

5 [50] 

6 [21] 

7 [22] 

8 [22] 

9 [23] 

10 [24] 

Test 83% 

11 [25] NDAE 
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97.9%, 
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, AI 
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to achieve 99.5% on training and 83% on test 

. In the work at row 11 the authors use NDAE 

KDDCup99 and NSL-KDD get accuracy of 

97.85% [25]. In [26] (row 12) authors propose 

TL-IDS and test it with NSL KDD dataset to 

% accuracy. In rows 13 and 14, the authors use 

l network (DNN) to achieve 65-75% training 

ith the UNSW-NB15 datasets and binary 

n accuracy of 76.3% [49]. This is markedly 

n 95-99% accuracy achieved with the 

 datasets.  

row indicates the accuracy obtained by MUSE 

 UNSW-NB15 datasets. These figures obtained 

experiments show comparable or better results 

pared works. 

Table 7. Comparison with other works 

 

Model, 

Dataset 

Accuracy Timing 

Analysis 

Remarks 

CNN, 

CICIDS2

017 

96.55% - Cloud 

Computing 

environme
nt 

BMO-

DBN 

97.65 - Pure DBN 

gives 

96.17% 

CNN, 

LSTM, 

generated 
dataset 

Training: 

CNN 96.7 

LSTM 98.5 
Test 90.2, 

95.1 

- Edge cloud 

environme

nt for 
automatic 

vehicles 

SVM 

NSL-
KDD 

NSL-

KDD8 
88.32% 

UNSW 

93.3% 

- Baseline, 

shallow 
model 

RBM 

with 

KDDcup 
1999, 

UNSW15

, NSL-
KDD 

KDDCup9

9: 90.99%, 

UNSW-
NB15, 

95.84%, 

NSL-KDD 
97.11%  

-  

Modified 

LeNet-5  

NSL-KDD 

87.30% 
KFFCup99 

81.94% 

 NSL-

KDD/KDD 
Cup 

Detection 

rate=93.86 
/99.82 

False 

Positive 
Rate=21.38

/98.65 

RBC-IDS  KDDCup9

9 90%-
99.91% 

Training 

31.5 s, 
Test 

1.62 s 

WSN 

cluster with 
20 sensors, 

up to 3 

hidden 
layers 

ASCH-

IDS 

KDDCup9

9 Upto 
99.83% 

Training 

17.1 s 
Test 

0.86 s 

 

BLSTM-
RNN 

UNSW15 
95% 

  

H2O deep 

learning. 

NSL-KDD, 

Train 

99.5%, 

  

NSL-KDD 

97.85% 

12 [26] STL-IDS, 

NSL-

KDD 

NSL-KDD 

84.96%  

 Binar

classi

on 

13 [49] DNN 
UNSW 

65-75% 
(Train) 

  

14 [49] DNN 5-

layer 
UNSW-

NB15 

binary 
classificat

ion 

76.3%   

15 This 

work 

MUSE 

UNSW-

15 

Test 95-

99.5% 

27% 

speedup 
over 

unmerge

d 

Mult

cloud

for at

detec

*First stage trained with UNSW-NB15 with both normal an

examples 

8. Conclusions 

From the discussion in this paper we see that resea

have reported use of deep learning in the form of ar

neural network models for detection of attacks in di

environments [25]. Very few of these works are 

cloud environment and hardly any in mult

environment. To the best of our knowledg

investigation is available for the IoT-mult

infrastructure, especially with hierarchical and merge

with layer reuse. The MUSE system proposed in this

fills this gap. The proposed hierarchical model work

well with the hierarchical structure of the hea

network. The distributed nature of the intrusion de

system has models of increasing complexity from 

the core clouds. This makes the implemen

commensurate with the processing capabilities avail

different levels. One common problem with sophis

deep learning models is their time complexity. W

explored reducing the training time at the core 

through innovative reuse of trained layer from th

clouds. The method works by reducing the num

parameters to be trained in the core cloud. We are 

achieve fast training rates for sizeable neural n

models at the core clouds by aggregating the trained

of the edge cloud neural network models. Exceedi

expectations, not only the timings improve drastical

accuracies are much better than those that are achie

training new SAE at the core clouds and also comp

many of the cited works. It is seen that the training t

a 12-layer merged model that reuses trained layers fr

edge cloud models takes 10.1% to 29.2% less time 

smaller 8-layer unmerged model that does not reu

training carried out at the edge clouds. Accuracies 

93% were obtained with the unmerged models, wh

merged models achieved accuracies of more than 95

more often in the range of 98%-99.6%. In real life, m

models trained on a combination of historical patie
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stored in the core clouds along with more recent data 

patient data from the IoT gateways and the edge clouds, are 

expected to

been obtain

Healthcar

human life 

the deep le

explanation

system abou
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 give results comparable to those that we have 

ed under simulated settings.  

e systems are different from many others as 

and well-being is involved. Decisions given by 

arning system should stand to scrutiny and 

. Medical experts should be able to question the 

t the reasons for giving a certain diagnosis or 

atients should be able to ask why the doctor 

bed a particular line of treatment. This will 

nfidence and make these systems acceptable. 

carry forward our research in this direction. 
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