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ABSTRACT

MIN is an Lnteractive computer program package for function

minimization. It provides building blocks with which a user can construct

a program to solve his problem. Moreover, it is an educational tool

which helps users "learn" what is happening by interacting with the

program while it is executing, by testing out his intuition, by switching

algorithms between iterations, etc. Currently MIN provides a choice

of four search direction algorithms (Davidon Fletcher Powell method.

Parallel Tangent Method, Fletcher Reeve's Conjugate Gradient Method,

and Gradient Method) and five line search algorithms (Golden Section,

False Position, High Order, Fibbonacci and DSC-Powell Search). Also,

it provides several stopping criterion, different output formats, and

proper input checking facilities. The package has been written in BASIC

language Implemented on WANG 2200 computers.



1. INTRODUCTION

The purpose of this report is to describe MIN, an interactive

computer program package written in WANG 2200 BASIC.^ MIN provides
the building blocks with which a user can construct a program to solve

his unconstrained function minimization problem. In developing MIN,

emphasis was placed not on just getting answers, but on solving the prob

lems in a nice way. Thus, MIN is an educational tool which helps the

user "learn" what is happening by interacting with the program while it is

executing, by testing out his intmtion, by switching algorithms between

iterations and by trying out a gamut of other possibilities. Of course,

MIN may be used as a straightforward "canned" function minimization

program if desired.

The organization of this report is as follows. In Section 2 we shall

describe how MIN is Lmplementedandwhatfaciliti.es it provides. Section 3

gives briefly the theory of the various algorithms vised in MIN. Those

interested in simply using MIN rather than learning its details may do so

by skipping directly to theAppendix (user's guide to MIN).

^BASIC on WANG 2200 differs from that on other computers mainly in
File and other I/O handling commands.



2. IMPLEMENTATION OF MIN

2. 1 Overview

The problem ia to find the minimum of a function VO(x) where x

is an n-vector and VO has a gradient vector Vl(x).^ To solve this
problem the user may write his own custom made program or he may use

MIN to provide the building blocks for his program.

Any program written to solve the above problem will have a flow

chart similar to that in Fig, 1, The central idea behind this flow chart

is illustrated in Fig. 2. Here x* is the as yet unknown solution to the

problem which the user wants the program to search for. The starting

point for the search is the user's giiestimate of x*. Point is the

approximation to x* found after k iterations by the program. At x^,

the program uses some algorithm (e.g., Gradient, DFP, etc.) to provide

the next search direction Sj^. For example, in case of gradient algorithm,

search direction Sj^ is opposite that of the gradient vector Vl(Xj^) at x^^.

Along Sj^ the cost function VO is a function of a single parameter w,

i. e. , VO =V0(xj^+iijs^). At this point the program uses a line search

algorithm (e.g., Golden Section, Fibonacci Search, Cubic Search, etc.)

to find the best value of w --that is, the value which gives minimum

VO along the search direction Sj^. Another essential part of the custom

ized program is the "Stopping Criterion" which causes the program to

stop iterating. An example of commonly used stopping criterion is "Stop

when gradient norm is reduced below a specified tolerance. "

^ We use VO to denote the function and Vn to denote n-th derivative
of VO. In particular, VI denotes gradient vector.



2. 2 Building Blocks Provided by MIN

MIN provides several building blocks with which the user can

construct his own minimization program. Also, he may switch building

blocks and compare the performance of different programs with respect

to his problem. MIN provides a choice of three stopping criteria, four

minimization (or search direction finding) algorithms, and five line

search algorithms as follows:

The three stopping criteria are:

1. Stop when gradient norm Is reduced below a specified tolerance

2. Stop when parameter Improvement Is below a specified tolerance

3. Stop after a specified number of iterations

The four minimization (search direction finding) algorithms are;

1. DFP (Davldon Fletcher Powell) method

Z. Partan (Parallel tangent) method

3. Fletcher-Reeves conjugate gradient method

4, Gradient method

These algorithms are discussed in Section 3. 2.

The five line search algorithms are

1. Golden section search

Z. False position search

3. D.S.C. Powell search

4. High order search

5. Fibonacci search

These line search algorithms are discussed in Section 3. 3,

The justification for each of the stopping criteria and circumstances

under which one is preferred will be discussed in Section 3. 1. The user



has a choice of epecifying any of eight pOBsible combinations of these

three criteria. For example, he could Instruct:

"Stop when gradient norm is reduced below 10"^, however,
I can't wait longer than 100 Iterations and I don't care about
parameter improvement. "

Of course, MIN will not understand the above English statement, instead

the user will have to provide MIN with appropriate numerical answers

to some questions. How to properly instruct MIN is discussed in the

Appendix.

2. 3 Modules of MIN

Ediacational value of MIN is evident from the fact that the user may

not only try any one of 160 (= 8 x 4x 5) different custom made programs,

but he may switch back and forth among them, compare, and learn.

Furthermore, MIN has a modular structxire so that it lb very easy to

extend its capability (e. g. , adding a fifth minimization algorithm) with

out affecting its present form, MIN consists of four different modules

each made up of one or more files as follows:

1. Input Module - one file named "INPUT"

2. Execution Module - 3 files named "DFP", "PARTAN", and "FR"*

3. Line Search Module - 5 files named "GS", "FP". "DSC", "HO",

and "FS"

4. Output Module - one file named "OUTPUT".

The Execution Module avoids a separate file for gradient method using
the fact that DFP when restarted every iteration yields the gradient
method.



MIN uses one file from each module to construct the user specified

"customized minimization program". This is illustrated in Fig, 3, which

also indicates the user interaction with MIN. The KEYIN facility will be

discussed in the next section. The logical flow chart for MIN is shown

in Fig. 4. The first LOAD and RUN causes the input module to execute.

This module sets up a dialog with the user and asks him to specify his

function, tolerances and his choice of various options. It has a built in

error checking routine to check if the user's response is appropriate and

if not, to ask him to respond correctly. The sample shown in Fig. 5

illustrates this point. Here a question mark (? ) at the beginning of a

line procedes user response.

After all the data is in, the user is given a chance to correct any

of them. Once the user okays all the data, MIN replaces the input module

by appropriate files from other modules to build the user specified program.

This process commonly called "overlaying" is necessary due to memory

limitations of the computer [l]. Figure 6 shows the memory map for MIN,

that is, a conceptual "snapshot" of what the computer memory holds.

Here the horizontal represents "time" and the vertical the "memory".

Note the indicated times at which the snapshot changes. The second change

(reloading of the input modtile) is achieved by the user through the KEYIN

facility discussed next.

2. 4 KEYIN Facility

This permits the user to interrupt the program at any point during

execution and gives him an option to change any of the input data. This

is achieved by pressing special function key "15"* on the "WANG 2200

An earlier version of MIN (version 3) allows the user to turn screen
display of detailed line search results on and off by keying-in special
function key "0". However, this has been eliminated from MIN version 6
due to memory limitations.
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Ul

—:

UPDATE;

IS FUNCTION ALREADY IN'

DATA INPUT ROUTINES

DISPLAY ALL DATA

DOES USER
•AKT TO CHANGE DATA'

DELETE INPUT NODULE,
LOAD EXECUTION
WOULE, LINE SEARCH
HOO(K.E, AND OUTPUT
MODULE

•—STOPPINT"-
C«ITERIA SATISFIED?.

FIHI NEW SEARCH
DIRECTION S|

M LINE S£A«CN TO
FINO STEP SIZE o).

PtlMT FINAL RESULT

--^S USER^
•ANT TO CONTINUE

FROM HERE

J!2J IHOICATE HOW TO
INPUT FUNCTION ETC.

PRINT INTERMEDIATE

RESULTS

FIG. 4 A LjOGICAL

fijow chart for min
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IIAVE YOU STORED FUNCTIOU ETC.
(Y OR K)
? YES
PLEASE INPUT Y OR N OKLY
? CLEAR
PLEASE INPUT Y OR N ONLY
? Y

1.WHICH MINIMIZATION ALGORITHM j? DO YOL WANT TO USE
(1=DFP ,2«=PARTAN,3-FLETC1IER REEVES .^-GRADIENT)
? BFP
NUMERIC ANSWER (MAX 13 DIGITS ) REQUESTED. PLLASE INPLT AGAIK
? 1111111111111
ANSWER MUST BE BETWEEN 1 AND 4 . PLLASE INPUT AGAIK
? 1.5
ANSWER MUST EE INTEGER. PLEASE INPUT AGAIN
? 0000000000000000001
NUMERIC ANSWER (MAX 13 DIGITS ) REQUESTED. PLLASE INPUT AGAI !
? 00000001

2.WHICH LINE SEARCH ALGORITHM H DO YOU KANT TO USE
(1=G0LDEN SECTION,2«FALSE POSITION,3-DSC POWELL,
4«HIGH ORDER,5=FIB0NACCI)
? 1E5
ANSWER MUST BE BETWEEN 1 AND 5 . PLEASE INPUT AGAIN
? lOOE-2

3.STARTING POINT
X( 1 ) =
? UNKNOWN
NUMERIC ANSWER (MAX 13 DIGITS ) REQUESTED. PLEASE INPUT AGAIK
? 0
X( 2 ) =
? -lEND
NUMERIC ANSWER (MAX 13 DIGITS ) REQUESTED. PLEASE INPUT AGAIK
? -lE-5

4.GRADIENT TOLERANCE
? 0

FIGURE 5: Error Checlidng--Sample Dialog
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keyboard. When thle happens MIN stops the program and asks him if he

wants to change any data and if needed reloads the input module.

2, 5 Machine State Indication

Another educational feature incorporated In MIN is keeping the user

informed of what is happening In the machine, i. e. , whether it Is

executing his program, waiting for his Input, or waiting for the output

typewriter. MIN uses upper left corner of the CRT screen for this

purpose. At any time, this corner will display one of the following four

messages:

1. WAITING FOR INPUT

2. LOADING

3. EXECUTING

4. PRINTING

These messages are well-nigh self explanatory. When machine is

"WAITING FOR INPUT", the user will find on the screen a question

waiting for his answer. He will see the cassette movement during

"LOADING" and the typewriter action during "PRINTING".

Machine state indication considerably reduces user frustrations.

For example, if the typewriter Is not switched on to AUTO-mode, then

there is no way for the user to tell whether the machine is simply waiting

for typewriter or it is executing his program. However, the state indi

cation "PRINTING" without typewriter movement warns the user that

there is something wrong with the typewriter.



-13-

3. THEORETICAL DETAILS

3. 1 Stopping Criterii

Choice of appropriate stopping criterion continues to be a topic of

discussion among researchers in the field of optimization. One such

lively discussion may be found in [2]. Recall from Section 2. 2 that MIN

provides a choice of any 8 possible combinations of 3 stopping criteria.

If the function is very flat about the optimum (small hessian) then

parameters may be quite inaccurate unless the gradient tolerance is very

small (see Fig, 7). On the other hand, when minimizing a function with

large hessian (e. g. penalty function), it is very difficult to reduce the

gradient to small values and yet it is possible to obtain parameters quite

accurately (see Fig. 8). This suggests that the bound (or tolerance) on

gradient norm ||Vl|| must be, in some way, related to the hessian V2.

After some experimentation it was found that for those interested in

accurate parameter values, a bound on step size (which is

proportional to V2 ^ Vl ), would be an appropriate stopping criterion.
This justifies the second stopping criterion. The third criterion of

stopping after a certain number of iterations helps avoid frustrations of

a user who has a limited time and is not very sure that his tolerances

on gradient norm and step size will ever be met.

MIN accepts zero values for gradient and parameter tolerances. A

zero value for parameter tolerance requires program to "stop when

parameter improvement in any one iteration is below zero. " It is obvious

that step size (or similarly gradient norm) can never be negative, hence

a zero tolerance is equivalent to nullifying corresponding stopping

criterion.



FUNCTION

VI (Xk)

XK PARAMETER

FIG. 7 SMALL GRADIENT TOLERANCE FOR

FUNCTION WITH SMALL HESSIAN

VKXk)

PARAMETER

FIG. 8 LARGE GRADIENT TOLERANCE FOR
FUNCTION WITH LARGE HESSIAN
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To protect the user (from consequences of his bad choices) IvUN

uses two additional criteria to stop. These are 4 and 5 below:

4. Stop when MIN thinks it has reached the minimum. This

happens when MIN finds that decrease even along steepest descent

-99direction is less than 10 , the least positive floating point number

for WANG-2200.

5. Stop when MIN finds that

(a) the user specified search direction algorithm has failed to

give a direction along which there Is descent, and

(b) the user has instructed MIN not to restart search along

steepest descent direction, under condition (a).

3. 2 Search Direction Algorithms

3. 2. 1 DFP: This a quasi-Newton method originally proposed by

Davidon [3] and subsequently developed by Fletcher and Powell [4]. It is

also known as a "variable metric method". When VO is quadratic it

simultaneously generates the conjugate gradient directions while

constructing the inverse hessian [5, p. 194]. The method for selecting

Sj^ is simply

= - H. gk ®k

where g^ = Vl(x^), and is the approximation to the inverse Hessian

updated by

«k+l = Kk +

Pk = ""k ®k

Pk Pk _ 2^k^^£k_^£k_^
Pk ^«k ^gk ^

^®k " ®k+l " ®k
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When VO is a quadratic with constant Hessian C it is easily shown

that H =C'^ and that the directions s. are C-conjugate. With
H iC

Hq = I DFP becomes a conjugate gradient method. To afford some

flexibility to the user MIN lets him choose a scale factor a and uses

Hq = cil. It is suggested in the literature [6] that sensitivity of DFP to

accuracy of line search may be reduced by restarting after every m

iterations where m s n, i. e. by setting = Hq. MIN allows the user

to choose m.

The OFF rnethod exhibits "poor convergence" characteristics if

the Hessian of VO has a poor eigenvalue structure. To remedy this

Orien and Luenberger [7] have developed a self-scaling procedure which

is incorporated in MIN as follows:

^ " T

Pk

PkPk
T

Pk

The user has the option of using self-scaling or not. These options make

MIN very versatile and useful both for educational purposes and problem

solving.

3.2.2 PARTAN: This method {of parallel tangents) was first

developed by Shah et al. [8] based on geometric properties of the contours

of a quadratic VO. It is a particular implementation of the method of

conjugate gradients (see [5] p. 185).
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The search directions Sj^ are generated by two line searches as

indicated in Fig. 9. In the first iteration Xj is found from Xq by a

standard steepest descent step. After that " determined from

by two line searches, i. e., y^^ is first found by a standard steepest

descent step from and then is found by locating the minimum

point on the line connecting Xj^ j and y^^. The process is continued for

n steps and then restarted with a standard steepest descent step.

This method has strong global convergence characteristics. Also

the line searches need not be as accurate as in other methods.

3. 2. 3 FR; The search direction algorithm FRwas developed by

Fletcher and Reeves [9]. This method Ls an Implementation of the conj\^ate

gradient algorithm for non-quadratic VO without using its hessian. The

algorithm is simply,

- ^k+l + Pk \

®k+l ®k+l
T

®k ®k

®0 = - So

where is found by line search along Sj^ from Xj^.

The algorithm must be restarted after every n iterations (i.e. , s^

must be reset to -g^). This restarting is important for assuring global

convergence of the method.

3. 2.4 GRADIENT Method: This is one of the oldest and most

widely known methods for minimizing a function. In this method the

search direction is always the negative gradient direction, i. e.,

®k = - Sk •
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LUSTRATING PARTAN
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Most of other algorithms have been discovered by an attempt to

modify this basic steepest descent method in such a way that the new

algorithm will have superior convergence properties. This method has

been included in MIN not only because it is the most often used technique

but also because it continues to be the standard of reference against

which other technics are measured.

3.3 Line Search Algorithms

The basis of all the line search algorithms is to find an interval of

acceptable length which contains the minimum of VO in a particular

direction as quickly as possible. That is they compute «)♦ such that

V({o*) s 'V{a)) for all u)^0, where V{u)) = VO(xj^ + U5 s^^). One method of

computing (u* is to determine an "uncertainty interval" UI = [a, b] such

that a s u)* s b. The program stops when a small enough UI is found to

m^eet the specified parameter tolerance. The property used to find UI

is that if 'V((o) is a unimodal function and V{a)j) > ^(coj) < V(a)2) for some

a3i<uj3<<u2 'then ie an'UI. The triplet (OjjU)^, 1U3 with above

property is said to form a three-point pattern.

Each of the five line search algorithms (GS, FP, DSC, HO, FS)

incorporated in MIN has the following common features:

(i) Start iteration at u) = 0.

(ii) Find UI.

(iii) Find next iterate. Ensure new iterate lies in UI.

(iv) Use new iterate to reduce UI.

The authors acknowledge with thanks the assistance of Rajan Suri in
writing this section.
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(v) If UI > parameter tolerance go to (iii).

However, the manner in which they implement (ii) and (iii) Ls different.

3. 3. 1 GS: The golden section algorithm is probably the best

known [5, p. 134). As stated earlier, the initial UI is found by

locating (Dj >0)2 "> u>2 8uch that ViiUj) > V(u)2) <V(u)2). The implementation

of GS in MIN is such that (o^ divides inthe ratio G:l-G where

G = 1-G =• . 62 is the golden ratio. The next iterate is chosen such

that it divides [1^2,0)2] in the ratio 1-G:G. This leads in step (iv) to a

reduction in UI to G times the original length. Of the five line search

algorithms the golden section proved to be the most robust.

3. 3. 2 FP: The false position algorithm attempts to find (o* as a

solution to the equation g(aj) = (d/diu) V{u)) = 0 by a secant approximation.

The iterations take the form,

r m.-u). ,

'"i+1 = '"i

Two safety features are incorporated in the FP implemented in MIN.

They are,

i) Check for divergence caused by negative slope of g(a)), {see

Figure 10).

ii) Check for slow convergence arising as shown in Figure 11. Thii

is done by testing for an unbalanced UI and choosing the next iterate to

balance it.

C

We call an UI [co,, o)-, u),] unbalanced if one of the intervals [u),,a>,],
[cUj, CO2J is an order of magnitude larger than the other. '
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3.3.3 DSC-Powell [10, p. 44]: Thia has two stages. First, the

algorithm of Davies, Swann, and Campey is used to £nd initial Ul. This

consists in doubling the step size until the minimum is overshot. The

resulting three point pattern is refined by considering the mid-point of

the last interval. This is followed by the Powell algorithm which uses a

quadratic approximation on the three point pattern to estimate the

minimum. The new point is used to form a three point pattern on a

shorter Ul. The Powell algorithm is repeated until required tolerances

are met. The Powell algorithm is improved in MIN by testing for un

balanced Ul and balancing it when necessary. This results in a more

robust algorithm.

3. 3. 4 HO: The high-order method by Micchelli and Mirsinker [11]

finds (13^ through the equation g((i)) = 0. The basic idea here is to use

bounds on dg/duu to estimate the smallest Ul as follows: Suppose

g^ = g(u}^) and ~ found such that g^ ^ 0 ^ g^ and that

ms dg/du)S M in [u>j,cd2]' The new Ul is taken to be [cDjjOj^] where,

0,2 =

/Si g2 \
ri • M ' '"Z - m / '

1 M

^min (o-i -̂ ),

m > 0

m s 0

m >0

m s 0
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However, if m and M are not known then they are estimated as follows:

m. = 8 ,

'0 " 2

82 • 81
s = at the i-th update.

u)2 - tui

While estimating m and M as above a careful check is made by MIN to

ensure that and u)^ are not chosen if they fall outside Ul.

3. 3. 5 FS; The Fibonacci Search derives its popularity mainly

because of its theoretical elegance. Given, an initial Ul of length and

a minimum acceptable separation c for function evaluations this algorithm

satisfies the specified parameter tolerance (i. e., the maximum acceptable

length 5 of the final Ul) by using smallest number N of function

evaluations. The procedure is as follows: (i) 1^, the initial Ulhas length

Place the first function evaluation in at a distance from one end

of where

^ ^N-1 " ^N-2 ®

and are the Fibonacci numbers satisfying

^i = ^i-l + ^i.2' ^0 = ^1 = ^

(ii) Reduce Iq to Ij by placing the second function evaluation at

the reflection of the first about the mid-point of Iq.

(iii) Ij will then contain a function evaluation.
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(iv) Reduce to similar to step (ii) and repeat until 1^^ has

been found.

In practice, it was found that the number of function evaluations

were about the same for FS and GS. Besides, this number was not at

all sensitive to typical changes in e (see Table 1). It is therefore felt

that the added burden of computing the Fibonacci numbers is not worth

the trouble.

3, 4 Selecting Line Search Algorithms

A comparative study of the five line search algorithms was made on

several test functions and the results in Table 2 are intended to help the

inexperienced user in selecting the line search algorithm for his

minimization-program. The performance of the five line search

algorithms on a particular test function, V(u)) = u)+ e are shown in

Table 3. The reasons forselecting this test function are:

i) Transcendal functions are commonly used to test line search

algorithms because no rational curve can fit them exactly.

ii) For 1 - u) = 6« 1 we have g(uj) =1 - e®=- 6. Thus an uncertainty

of ± 6 in g(ui) is approximately equivalent to a similar uncertainty in o)

about the point oj = 1 where V(a)) has its minimum. This permits fair

comparison of line search algorithms involving gradient tolerances with

those involving parameter tolerances.



TABLE 1

No. of function evaluations for Fibonacci search

e (Minimum acceptable separation)

Final UI
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TABLE 2

Comparison of line search algorithms

Criterion for

selection
Golden Sear. False Psn. DSC-Powell High order

No information
on function

No idea of initial

step

Small number of

fen evals.

Speed of computation

High accuracy req'd.
(Final UK 10-5)

Low accuracy rq'd.
{Final UI > 10-5)

B

(takes too
long)
G

(numerical
errors)

G

NOTE: The Fibonacci Search has the same characteristics as the Golden
Section Search, except that it would be optimum when the minimum
separation is specified.

Good

Neutral

Bad

Not sure
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TABLE 3

Number of function or gradient evaluations required
for minimization of V(u)) = u) +

Tolerance on
Gradient or

Parameter
GS FP DSC HO FS

o
1

11 8 7 3 10

10"^ 20 9 9 9 19

10-5 30 10 10 11 29

10-7 40 14 * 11 38

10"^ 49 15 * 13 48

Initial UI for all algorithms was [0, 2. 1]

«c

At points very close to the minimum, the DSC-Powell algorithm ran
into difficulty due to the number of squaring and adding operations in
the Powell algorithm, which led to larger numerical error than the UI.
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APPENDIX

USER'S GUIDE TO MIN

The purpose of this appendix is to be a self contained guide to

assist you in using MIN, assuming that you have a fair knowledge of

WANG 2200 BASIC. A reading of earlier sections, though helpful in

understanding MIN itself, is not necessary to use MIN.

MIN is an interactive computer program package designed as an

educational tool to solve your unconstrained function minimization problem.

Three essential features of any function minimization program are:

(i) a stopping criterion,

(li) a minimization (search direction) algorithm, and

(iii) a line search algorithm.

MIN provides these features in the form of several ready made bmlding

blocks which you may use to build your own custom-made program.

Currently, MIN (version 6) provides a choice of eight different combina

tions of three stopping criteria, four search direction algorithms and

five line search algorithms. Thus, there is a choice of 160 (=8x4x5)

different configurations for your minimization program. What is more,

you may switch building blocks to change configurations between iterations

while solving a single problem.

This appendix is divided into five sections as follows:

A. 1; How to specify your problem

A. 2: How to LOAD and RUN MIN

A, 3: Special features of MIN

A. 4: How to have a dialog with MIN

A. 5: Sample dialog



-31-

It is suggested that you read Sections A. 1 - A, 3 before using MIN.

Section A. 4 is best used as a guide on-line. To use it off-line it is best

to simultaneously consult Section A. 5.



-32-

A. 1 HOW TO SPECIFY YOUR PROBLEM

If your function minimization problem Is

mln VO(x)

where the feasible set =R*^ (no constraints), n i 6 * and the

cost function VO has a derivative VI then you may use MIN to solve

your problem. To begin with, MIN expects you to supply the following

BASIC statements:

1. Problem title as a DATA statement. First 30 characters of

this title are used in Intermediate and final result outputs.

2. Number of variables (dimension of x) as a DATA statement.

This number must be less than or equal to 6.

3. A subroutine DEFFN'50 to define the function VO

4. A subroutine DEFFN'51 to define the gradient vector VI.

Extra care must be taken when specifying VO and VI. This Is

because MIN does not check for errors In these. In particular, you

should observe the following rules:

1. Do not use BASIC statement numbers below 8000

2. The two DATA statements should be strictly In the order shown.

3. The DEFFN' numbers 50 and 51 are reserved for VO and

VI, respectively. They should not be changed or Interchanged.

We limit n i 6 to permit use of MIN on a WANG 2200 with a modest
memory size of 8k words.
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4. In DEFFN'50 and DEFFN'51 use only the following variable

names:

VO = Function value - a numeric scalar

X(«) = Parameters - a numeric array

Vl( • ) = Gradient vector - a numeric array

DimensionB of X and VI are predefined in MIN (by a

DIMV1(6), X(6) statement) and you should not redefine

(or define) their dimensions even if your problem dimension

Is different.

5. If you need additional variables (such as for storing intermedi

ate calculations), use names Z 1 through Z9 (scalar or array).

No other names should be used. A DIMension statement must

be included if you use any array variables other than VI and X.

6. Before entering your problem make sure that the computer

memory is clear. To do this, press CLEAR key followed by

EXECUTE (CR/LF) key.

It is recommended that you save your problem specification on

cassette for possible future use. This may be done as follows:

» Mount your cassette on tape drive lOB and rewind it

. Key in SAVE /lOB, 8000 ICB/LF

• Wait for problem to be saved on your cassette

• Rewind and remove your cassette

Excimple: Suppose you wish to minimizse Rosenbrock's function:

, 2,2 . ,, ,2+ (1-Xj) for a = 1000
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You may specify this problem as follows:

8000 DATA "ROSENBROCK'S FUNCTION-1000"

8010 DATA 2

9000 DEFFN'50:Z9 = 1000

9010 V0=Z9* (X(l)! 2-X(2)).'2+(l-X(l)).'2:RETURN

9500 DEFFN'51:V1(1)=4* X{i)» Z9* (X(l): 2-X(2))-2*(l-X(l)):Vl{2)=-2*

Z9*(X{1).' 2-X(2)):RETURN
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A. 2 HOW TO LOAD AND RUN MIN

The steps in using MIN are as follows:

1. Switch on the WANG 2200. Enter your problem specification

and save it on your cassette as explained in Section A. 1.

2. Mount the MIN (version 6) cassette on tape drive lOA and

rewind it. Press the LOAD key followed by the CR/LF key.

Wait for loading to complete.

3. Press the RUN key followed by CR/LF

4. MEN will ask if you have stored (i.e. , loaded into memory)

your problem. Respond Y for Yes and N for No. If your

answer is N, MIN will show you how to store your problem

and then stop. ♦ Store your problem as indicated and go back

to Step 3.

5. MEN will continue the dialog from here which is self explana

tory (for details see Section A. 4).

* If you get an error message t ERR xxx then go back to Section A. 1
and check your problem specification carefully.
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A. 3 SPECIAL, FEATURES OF MIN

Before proceeding to have a dialog with MIN you should note the

following special features provided by MIN for your convenience:

1. On line guidance; After asking you any question MIN follows

It by a hint to help you with your answers,

2. Built-in error check: MIN checks errors In your responses and

will reject nonsense responses from you, again guiding you to the

correct response.

3. Flexible modification of input data: Once all data is in, MIN wUl

display Lt and will guide you in changing any data, if necessary.

4. Data printing; Once all data Is In and you have confirmed to MIN

that there are no more changes, then MIN gives you an option to

have all the Input data printed, thereby relieving you from the chore

of remembering them.

Key-In facility: MIN goes to great lengths to accomodate your

desire to change any Input data. Suppose you confirmed the Input

data to be correct then MIN builds up your minimization program

and executes it. If, after a few iterations of your program execu

tion, you decide to change the Input data, then you may indicate this

to MIN by pressing Special Function key 15 (In the top row of

WANG 2200 keyboard). MIN will halt execution of your program,

and ask you whether you wish to change input data. If your response

is N, MIN will forget the Interruption and program execxition will

continue. If your response is Y, MIN will let your program
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complete the current iteration and then go back to the input dialog

with you to let you make appropriate changes.

Machine-state indication: To keep you informed of what is happen

ing, MIN displays a message indicating current machine state.

This message appears on the top left corner of the screen and may

be one of the following: Waiting for Input, Loading, Executing,

or Printing. In particular, if MIN indicates a state "Printing",

make sure that the typewriter is switched ON and is in Auto mode

so that it is ready for printing.

Continuation after stopping: When any of the chosen stopping criteria

is satisfied, MIN stops executing your program and displays the

"final results". At this point you may stop or continue minimization

after making suitable changes in input data. For example, suppose

you chose a stopping criterion of three iterations and the program

stopped. Then you may switch the minimization algorithm and

continue the iterations from the new point or you may change the

starting point and continue, etc.
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A. 4 HOW TO HAVE A DIALOG WITH MIN

This section is meant to be used as an on-line reference during

dialog with MIN. In the discussion below, we reproduce the questions

exactly as asked by MIN and follow it with explanations and helpful

hints for your answer.

1. WHICH MINIMIZATION ALGORITHM# DO YOU. WANT TO USE
(1=DFP, 2=PARTAN. 3=F1jETCHER REEVES, 4=GRADIENT)

You have a choice of four different minimization algorithms:

1. DFP (Davidon Fletcher Powell) method

2. PARTAN (Parallel Tangent) method

3. FLETCHER-REEVES (conjugate gradient) method

4. GRADIENT (steepest descent) method

Input the number (1 through 4) of the algorithm that you want to use.

The number of subsequent questions asked will depend on the method

chosen, (For details of these four methods, see Section 3. 2.) Since

the relative performance of these methods depends on the function to be

minimized, you are encouraged to try out as many of them as you can.

From experience, for complicated functions, these methods generally

rank in the order in which they have been listed above.

2. WHICH LINE SEARCH ALGORITHM # DO YOU WANT TO USE
(l=GOLDEN SECTION, 2=FA1£E POSITION, 3=DSC POWELL,
4=HIGH ORDER, 5=FIBONACCI)

You have a choice of five different line search algorithms as

Indicated. Enter the number (1 through 5) of the algorithm chosen by

you. For details of these algorithms, see Section 3. 3. There is no
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definite order in which they are expected to perform. Table 2

(Section 3. 4) summarizes the knowledge gained from our esqierience.

3. STARTING POINT
X( 1 )=

X( 2 )=

MIN asks you to give values for • • • successively.

For example, if your problem dimension is three, you will be asked to

specify X(l), X(2), and X{3).

4. GRADIENT TOLERANCE

This is the point where you choose one of the three stopping criteria

provided by MIN. The minimization program will stop if gradient norm

is reduced below this tolerance (usually 0 to 10 ^), Since gradient norm

can never be negative, a zero tolerance will nullify this criterion, i. e. ,

the program will never stop by satisfying this criterion. Nullifying a

stopping criterion normally results in the program coming to a stop on

some other criterion after much longer execution time. It is- therefore

-4
suggested tliat you start with a coarse tolerance (such as 10 ) and make

it finer (e. g. , 10 if program stops on previous tolerance. For more

discussion on stopping criteria, see Section 3. 1.

5. PARAMETER TOLERANCE

This is' the second of the three stopping criteria provided by MIN.

The program will stop whenever parameter improvement (i. e. , step

size *k+l " ^ iteration is below the tolerance you specify

here. (For the significance of this criterion, see Section 3. 1). You
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are allowed to input any non-negatLve value (normal range 0 to 10" ).
-10

However, it is suggested that non-zero values less than 10 be not used.

Otherwise, truncation errors may become comparable to tolerance and

cause unpredicable problems. You may still input 0 to nullify this

criterion so that the program will not check parameter improvement. In

this case, MIN intelligently avoids truncation error problems by suitably

adjusting the tolerance internally.

"Parameter tolerance" as used here should not be confused with

"parameter accuracy". A parameter tolerance of 10"^ does not guaran

tee that final results will be accurate to 3rd decimal digit.

6. NUMBER OF ITERATIONS (I. E. LINE SEARCHES) REQUIRED*

This is the last of the three stopping criteria provided by MIN.

The program will stop after executing the specified number of iterations.

99Any number from 1 through 10 may be specified. 0 is not acceptable.

A large number will essentially nullify this criterion as the program will

invariably stop on some other criterion.

Note that you can nullify all the three stopping criteria. In this

case, MIN will stop on one of two additional stopping criteria over which

you have little control. These are:

1. Stop when MIN thinks that the minimum has been fovmd

2, Stop when searcii direction finding algorithm fails and no re

start is allowed by you.

To avoid any ambiguity, we take one iteration to be
one line search.

synomymous with
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7. HOW MUCH INTERMEDIATE RESULTS DO YOU WANT ON SCREEN
(0=NIL, l=ONLY FN. VALUE + NORM OF GRADIENT, 2=X, VO, VI,STEP SIZE)

You have three options for format of intermediate results on the

screen:

1. No Intermediate result

2. Function value and gradient norm listed in a tabular form (Fig, 12)

3. Parameter values, function value, gradient value, step size, etc.

listed in detail as shown in Fig. 13.

If option 1 is chosen, the screen (except for machine state indication)

will remain blank during execution. This choice may make you loose your

patience, and does not result in any significant time saving becaxise screen

display is a very fast process.

8. HOW MUCH INTERMEDIATE RESULTS DO YOU WANT ON TYPEWRITER
{0=NIL, l=ONLY FN. VALUE+NORM OF GRADIENT, 2=X, VO, VI,STEP SIZE)

The same three options as in question 7 above are available. However,

since it takes a long time to print the result on the typewriter, this choice

should be made more carefully. You may choose any of the nine possible

combinations of formats on the screen and typewriter. A good choice is

to select option 3 (detailed results) for screen and option 2 (tabular results)

for the typewriter.

9. HOW SHOULD THE FINAL RESULT BE OUTPUTED
(1-DISPLAYED ON CRT, 2-PRINTED, 3-BOTH PRINTED AND DISPLAYED)

There is only one format of the final result. However, you may

choose to display it on the screen and/or typewriter.
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IKTERMEDIATE RESULT FOR ROSEIIBROCK' S FLKCTIOK-100
(USING DFP WITH GOLDEK SECTION)
ITERATIONS? VALIE OF FUNCTIOK NORM OF GRA

0 1 2
1 .771109685344 5.201072
2 .62369020096 7.533601
3 .4364478606411 2.967683
4 .317283836438 3.813578
5 .27451813571C 6.644584

GRADIENT

5.2010728168
7.5336017466
2.9676839743
3. 8135783301
6.6445842391

FIGURE 12: Tabular Form for Intermediate Results
(Option 2)
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INTIiRMEDIATE RESULT FOR ROSLliliROCK' S FUliClION-100
(USING DFP WITH GOLDEN SECTIOi;)
x''̂ o^('̂ ^8720204592283 , . 7557345692972 )
VALUE OF FUKCTIOi; =
i:ORJI OF GRADIENT « 1.666A451496
LENGTH OF STEP « .593 202 87642 69

INTERMEDIATE RESULT FOR ROSEIIEROCK' S FUKCTION-100
(USING DFP WITH GOLDEN SECTION)
x'̂ =̂ t^!"8e86229159788 . .753ie6545159A )
VALUE OF FUNCTION = 1.743929^5E-02
NORM OF GRADIENT = .335813^784
LENGTH OF STEP - 4.25911994E-03

FIGURE Detailed Intermediate Results (Option 3)
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10. # OF ITERATIONS FOR RESTART (RESETTING INVERSE HESSIAN)
{-1=RST ONLY IF NECESSARY, 0=NO RST. K=RST AFTER EVERY
K ITERTN)

This and the following two questions will be asked only if you chose

DFP method (in question 1), All search direction finding algorithms use

negative gradient directions at the start and then use some formula to

determine successive search directions. Some times the search direction

algorithms give a direction along which there is no descent and thus fail.

To avoid this situation, PARTAN and FLETCHER-REEVES algorithms

specify that after n (= number of variables) iterations the program must

be restarted, i. e, , search direction must be reset to gradient direction.

DFP does not have any rigid restarting rules and often one may get away

without restarting.

Restarting option has been included to allow you to learn more about

its effects by trying several different options. The available options are:

0: No restart (Program will stop if DFP fails)

K: Restart after every K iterations. Generally K is chosen to

be equal to the number of variables

-1: Restart if method fails.

A message "RESTARTED" will appear for a brief moment at the

top right corner of the screen during execution every time a restart

occurs.

II. DO YOU WANT SELF SCALING
(Y OR N)

This feature is also exclusive to the DFP method. The convergence

of DFP method depends on the inverse hessian of VO. A simple scaling

(multiplying inverse hessian by a scalar) sometimes significantly improves
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convergence. The self scaling method [7] incorporated in MIN scales

the inverse hessLan if you choose this option. This option is provided to

allow you to compare the performance of DFP with and without self

scaling. For details of self scaling, see Section 3. 2. 1,

12. INITIAL SCALE FACTOR (INVERSE HESSIAN WILL INITIALLY BE
SET EQUAL TO THIS FACTOR TIMES IDENTITY MATRIX)

As discussed above, a simple scaling of inverse hessian sometimes

results in significant improvement of convergence. Initially, hessian inverse

Is set equal to a I where I Is the identity metric and a is the initial

scale factor you choose. The closer al approximates the true inverse

hessian the better is the convergence. If you do not have any Idea of

the Inverse hessian at the starting point, a = 1 Is a safe choice.
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A. 5 SAMPLE DIALOG AND SOLUTION

ThLs section shows an actual RUN of MIN. The responses

from the user to MIN are easily identified by the question mark (? )

preceding those responses.



-47-

:RUN

HAVE YOU STORED FUNCTIOK ETC.
(Y OR N)
? Y

1.WHICH MINIMIZATION ALGORITWI f DO YOU HAIIT TO USE
Cl«DFP,2=PARTAN,3«'FLETCHER REEVES , 4=GRAD1ENT)

2.WHICH LINE SEARCH ALGORIXLH i! DO YOl WANT TO USE
(1-GOLDEN SECTION ,2»FALSE POS IT lOIi, 3"DSC POWELL.
4=hIGH ORDER,5-FIBONACCI)
? 1

3,STARTING POINT
XC 1 )'
? Y
NUMERIC ANSWER (MAX 13 DIGITS ) REQUESTED, PLEASE INPUT AGAIN

X( 2 )-
? 0

A.GRADIENT TOLERANCE
? -.001
ANSWER MUST BE GREATER TEAK OR EQUAL TO 0 . PLLASL INPUT AGAIN
? lE-4

5.PARAMETER TOLERANCE
? 0

6.NUMBER OF ITERATIONS(I.E. INE SEARCHES) REQUIRED

ANSWER MUST BE GREATER THAN OR EQUAL TO 1 . PLEASL IKPUT AGAIH

7.HOW MUCH INTERMEDIATE RESULTS DO YOU WANT ON SCREEN.
(0=Np,l=ONLY FN, VALUE+NORM OF GRADIENT ,2«X ,VO ,VI, STEP SIZE)
ANSWER MUST BE INTEGER, PLEASE INPUT AGAIN
? 2

8.HOW MUCH INTERMEDIATE RESULTS DO YOU WANT ON lYPEWPITER.
(0«NIL,1«=0NLY FN, VALUE+NORM OF GRADItri, 2»X, VO , VI, STEP SIZE)

9.HOW SHOULD THE FINAL RESULT BE OUTPUTEC
(1-DISPLAYED ON CRT ,2-PRINTED ,3-BOTll PRINTED AND DISPLAYED),
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10./' OF ITERATIONS FOR RLSTART (F.LStTlIKG INVLRSL nLSSIAK)
(-1-RST ONLY IF NECESSARY, 0=110 RS1^R=RST AFTER EVLRY K ITERTi;)

11.DO YOU WANT SELF SCALIIIC
(Y OR K)
? K

12.INITIAL SCALE FACTOR(INVLRSE LLSSIAi: WILL lEITIALY BL SET
EQUAL TO THIS FACTOR TIMES IDLNIIIY KAIRI}!)
? 1
HERE ARE TKE CURRENT UATA FOR ROSLKERQCK'S FUUCTION-IOO
1.MINIMZATION ALGORITHM - DFP
2.LINE SEARCH - GOLDEN SECTIOl,
3.STARTING POINT X = ( 0 , 0 )
4.GRADIENT TOLERANCE = 1.OOOOUOOGE-04
5.PARAMETER TOLERANCE « 0
6.NUMBER OF ITERATIONS REQLIRLL = 5
7.HOW MUCH INTERMEDIATE RESLLT ON SCREEN,,. 2
8.now MliCL INTERMEDIATE RLSLLT ON TYPEWRITER, , . 1
9.HOW SHOULD THE FINAL RESUL'i Ih OUTPITED.,. 3
10.RESTART OPTION...-1
11.SELF SCALING...N
12.INITIAL SCALE FACTOR « 1
PLEASE ENTER THL SERIAL d' OP ThL DATA TO EE CHANGED.IF /NY,
(O-FOR NO CHANGE)
? 2

2.Vn;iCH LINE SEARCH ALGORITHII i' DO YOl WANT TO ISE
(leGOLDEN SECTION,2=fa SE POSITION,3=DSC POWELL,
-4-lIIGH ORDER,5 = FIL0NACCI)
? 2

HERE ARE THL CURRENT DATA FOR ROSLKBROCK'S FLl.rTlON-ino
1.r:iNIMZATION ALGORITHM - DTP
2.LINE SEARCH - FALSE POSITION
3.STARTING POINT X = ( 0 , 0 )
4.GRADIENT TOLERANCE = 1.GOOOaOOOE-OA
5.PARAMETER TOLERANCE » 0
e.NUI'HER OF ITERATIONS REQUIRED » 5
7.HOW MUCH INTERMEDIATE RESULT ON SCREEN.,. 2
8.HOW MUCH INTERMEDIATE RESULT ON TYPEWRITER,,, 1
9.HOW SHOULD THE FINAL RESULT BE OUTPUTED... 3
10.RESTART OPTION...-1
11.SELF SCALING...N
12.INITIAL SCALE FACTOR = 1
PLEASE ENTER THE SERIAL f OF THE DATA TO BE CHANGLB.IF ANY.
(O-FOR NO CHANGE)
? 0
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lfMINDSA™0/A?G0«lE"- ^ FL.^CIIOK-100
2.LINE SEARCH - GOLDEN SECTIOIi
3.STARTING POINT X = ( 0 . 0 5
4.GRADIENT TOLLRANCE = 0
5.PARAMETER TOLERANCE = 0
6.NUMBER OF ITERATIONS REQUIRED » lOOC
7.K0W MUCH INTERMEDIATE RESVLT ON SCREEN... 2
8.HOW MUCH INTERMEDIATE RESULT ON TYPEWRITER.

" ouiPuTEB...
11.SELF SCALING...N
12.INITIAL SCALE FACTOR = 1

INTERMEDIATE RESULT FOR ROSEIIEROCR' S
(USING DFP WITH GOLDEN SECTION)
ITERATION? VALUE OF FUNCTION

0 1
1 .7711U96«5344
2 .623L902009C
3 .A36A478606411
4 .3172S3b36438
5 .274518135716
6 1.S5734155E-02
7 1.74392905E-02
8 6.126G480UE-(j3
9 1.17954014L-03
10 1.420S8875E-04
11 4.C5565508E-06
12 6.08S94230E-09
13 1.15552929E-12
14 3.58238844E-13
15 1.80000000E-19
16 2.42500000E-21
17 l.OlOOOOOOE-22
18 1.OlOOQOOOE-22

FUKCIION-100

NORM OF GRADIENT
2
5.2010728168
7.5336017466
2.9676839743
3.8135783301
6.6445842391
1.6664451496
.33581373784
2.0063248797
.76001095176
.30090057751
9.12062855E-02
1.30163586E-03
4.12928664E-05
2.25641321E-06
1.39556440E-0G
1.96606815E-09
4.45425639E-10
4.45425639E-10

FINAL RESULT FOR ROSENBROCK'S FUNCTION-lOO
(USING DFP WITH GOLDEN SECTION)
ITERATION // 19
X = ( 1.000000000001 , 1.OOOOCOOOOOOl )
VALUE OF FUNCTION =• 1. 01000000E~22
NORM OF GRADIENT = 4 . 45425639E-10
LENGTH OF STEP = 0
iJ OF FUNCTION EVALUATIONS- 62S
if OF GRADIANT EVALUATIONS" 36
STOPPING CRITERIA -
NOT MUCH DESCENT EVEN ALONG GRADIENT DIRECTION
(PROBABLY REACHED THE MINIMUM)
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