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Abstract— Cloud computing is gaining significant attention and 
virtualized data-centers are becoming popular as cost-effective 
infrastructure. Recently, there has been a trend to collocate the 
baseband unit (BBU) functionalities and services from multiple 
cellular base stations into centralized BBU pool for statistical 
multiplexing gain. The technology is known as Cloud Radio 
Access Network (C-RAN). C-RAN is a novel mobile network 
architecture that can address a number of challenges the mobile 
operators face while trying to support growing end users’ needs. 
The idea is to virtualize BBU pools, which can be shared by 
different cellular network operators, allowing them to rent radio 
access network (RAN) as a cloud service. However, manual 
configuration of the BBU services over the virtualized 
infrastructure may be inefficient and error-prone with the 
increasing mobile traffic. In this work, we propose development 
of a novel automated service deployment platform, which will 
help to automate the instantiation of virtual machines at the 
central clouds as per user demands vary and achieve end-to-end 
automation in service delivery for C-RANs. 1 

Index Terms—C-RANs; APIs; SDN; NFV; MCAD; OpenStack. 

I. INTRODUCTION 

Capital expenditure (CAPEX) and Operational expenditure 
(OPEX) in mobile networks are increasing significantly with 
the increase in user demands. Base stations are the most 
expensive components of a cellular network infrastructure. 
CAPEX increases significantly, as the mobile operator installs 
a new base station. OPEX is directly proportional with the 
requirements of base stations in terms of power, electricity and 
hardware to operate. However, the revenues for mobile 
operators are still flat. Therefore, novel architectures that 
minimize the CAPEX and OPEX for mobile operators while 
serving to the increasing user demands have become a 
necessity in the field of mobile network. Cloud-Radio Access 
Network (C-RAN) is a novel mobile network architecture, 
which has the potential to answer the above mentioned 
challenges.  In C-RAN, baseband processing units (BBUs) are 
centralized and shared among sites using a virtualized BBU 
pool [5, 13]. Since BBUs from many cellular stations are co-
located in one pool, resources can be shared increasing the 
utilization and reducing the power consumption. In addition, 
cellular sites become less expensive and easy to deploy, 
reducing the CAPEX significantly. Additional advantage is, 
BBU services can interact with lesser delays. 

Traditionally, in cellular networks, users communicate 
with a base station that serves the particular cell under 
coverage. The main functions of a base station can be divided 

1 This is an extended and modified version of a paper accepted in IEEE NCC
2016, funded by the NPRP award [NPRP 6-901-2-370]. We have extended the 

work significantly (40% changes) to be submitted to IEEE MCSMS 2017.  

into two, which are baseband unit (BBU) functionalities and 
remote radio head (RRH) functionalities. The RRH module is 
responsible for digital processing, frequency filtering and 
power amplification. The main sub-functions of the baseband 
processing module are coding, modulation, Fast Fourier 
Transform (FFT) and others [5, 7]. Data generally flows from 
RRH to BBU for further processing. Such BBU functionalities 
may be shifted to the cloud based resource pool, called as 
Cloud-Radio Access Network (C-RAN) to be shared by 
multiple RRHs. Advancements in the field of cloud 
computing, software defined networking and virtualization 
technology may be leveraged by operators for the deployment 
of their BBU services, reducing the total cost of deployment 
[16, 17].  

The actual concept of C-RAN is based on a WNC concept 
proposed in [9], which allows mobile virtual network 
operators to share the network resources and balance the 
workload over a low cost platform. Sample C-RAN 
architecture is shown in Fig. 1. As depicted in Fig. 1, BBU 
baseband signal functionalities (including physical, mac and 
layer 3), which require most of the processing resources, are 
relocated from RRH site to a collocated site i.e. the cloud [5, 
7, 19]. However, RRH is still responsible for tranceiving radio 
signals, amplification of signal power and A/D conversion. 
Interface between RRH and BBU modules is named CPRI 
(Common public radio interface) and is still in progress [7, 9]. 
In Fig. 1, we see high-level C-RAN architecture with 
associated components. The virtualized network consists of a 
group of virtual nodes and virtual links. As demonstrated by 
authors in [5, 7, 9], deploying the virtual networks for the 
heterogeneous network architecture promotes flexible control, 
low cost, efficient resource usage, and diversified applications. 
Network operators may benefit from the advents in the fields 
such as cloud computing, virtualization and software defined 
networking (SDN) [2, 3, 18].  

Fig. 1: C-RAN architecture for mobile networks. 
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With the evolution of the C-RAN, cellular network 
operators may experience following benefits:  
(1) Reduced cost: Since computing resources are aggregated in 
a single room, deployment as well maintenance cost for 
separate BBUs can be saved.  
(2) Increased energy efficiency: Since power consumption and 
load congestion can be reduced by dynamically allocating 
processing capability and migrating tasks in the shared pool, 
energy efficiency may be improved significantly. 
(3) Improved spectrum utilization: C-RAN enables sharing of 
channel state information of each base station-mobile station 
link, traffic data, and control information of mobile services 
among cooperating base stations, resulting in improved 
spectrum utilization [5]. 
(4) Improved resource utilization: As computational and other 
resources are shared, overall resource utilization can also be 
significantly improved. 
(5) More scalability: As RRH site can easily be deployed or 
undeployed as per the need, without worrying about 
installation of BBUs. Such new sites can be multiplexed with 
existing centralized BBU [20].  

Despite such great advantages provided by the C-RAN 
architecture, there is no explicit support for the mobile 
operators to deploy their BBU services over the virtualized 
infrastructure, which may lead to the ad-hoc and error-prone 
service deployment in the BBU pools. Given the importance 
of C-RANs and yet the ad-hoc nature of their deployment, 
there is a need of automated application delivery in the context 
of cloud-based radio access networks to fully leverage the 
cloud computing opportunities in the Internet [14]. OpenADN 
is a novel approach to facilitate multi-cloud service 
deployment and application delivery by extending the concept 
of control and data plane separation proposed by the 
“Software-Defined Networking” (SDN) architecture [2, 12].  

Cloud management platforms such as OpenStack, 
Amazon EC2, Google Cloud, OpenDaylight and many others 
automate the single cloud management process. Such cloud 
management platforms address the problem of automatic 
virtual resource creation, but from a single-cloud perspective. 
On contrary, OpenADN manages the application and service 
delivery across diversified platforms [1, 3] over distributed 
multi-cloud scenarios, which is a prevalent condition for C-
RANs. For scalability, OpenADN is implemented as a 
hierarchical model, with “Global Controller” being the 
centralized management entity. At each site (cloud or data-
center), “Local Controllers” are deployed to manage each 
cloud site locally [1, 2]. Hence, we may take advantage of 
these cloud management entities to automate the VM 
instantiations across multiple clouds for service deployment 
for BBUs. 

OpenADN heavily relies on the concept of the Network 
Function Virtualization (NFV) for end-to-end application 
deployments. NFV is an enabler for the Service Function 
Chaining (SFC) in the recent years, which allows network 
services to be deployed at software level contrary to the ad-
hoc hardware implementation [10-13]. In this work, we aim to 
enhance OpenADN by adding new interfaces (or APIs) that 

will facilitate the communication among OpenADN and other 
cloud management platforms instances, so that service 
deployment process in the collocated BBUs over clouds is 
automated for the cellular network providers. We call this 
novel and updated platform as Multi-Cloud Application 
Delivery Platform (MCAD). The rest of the paper is organized 
as follows. In section II, we provide overview of the 
OpenADN architecture. In section III, we discuss the proposed 
solution. Section IV discuss the implementation details and 
present the observations. Finally, section V concludes the 
paper.  

 
II. OPENADN ARCHITECTURE 

 
In this section, we have a quick look at the detailed 

architecture of the OpenADN platform. OpenADN is a novel 
Software Defined Infrastructure (SDI), which aims to service 
the current physical infrastructure by automating the 
application delivery process across multiple clouds [1, 3, 6]. In 
the contemporary networks, infrastructure components, such 
as VMs, need to be configured manually, which adds to the 
complexities and operational expenditures (OPEX) of service 
providers as well as the network operators. This eventually 
leads to lesser revenues for operators and high price to the end 
users as well as ad-hoc growth of the networks. OpenADN 
makes use of the advancements such as Network function 
virtualization (NFV) to deploy services across multiple clouds 
and then forming the service chains [1, 10, 11]. In addition, 
various cloud level management software exists to date, such 
as OpenStack, CloudStack, EC2, Eucalyptus, OpenDaylight, 
and FloodLight. However, they have been used for the 
management of entities within a single cloud. Hence, for the 
multi-cloud operations, such as management of the BBU 
functionalities over C-RANs, it is imperative to find a way to 
communicate between OpenADN and cloud managing entities 
to manage cloud platforms automatically.  

In addition, none of the single-cloud management tools 
allows operators to set and customize their application 
services and let them manage and choose the best cloud 
location to deploy the services. However, OpenADN, a novel 
architecture allows such multi-cloud deployment with 
functionality such as load-balancing feasible [3]. Before we 
explain the proposed solution, it is imperative to have a quick 
look at the existing implementation of the OpenADN 
platform. Fig. 2 displays a detailed block structure of 
hierarchical model of OpenADN [1, 6]. As we observe, there 
in one logically central entity called “global controller”. 
Though, there is only one logical global controller shown in 
the diagram, the system may have two or more physical global 
controllers for redundancy and fault tolerance. 

For each data-center site or for each cloud, there is a data-
center controller called a “local controller”. Set of IPs and 
port numbers pertaining to each local controller are 
maintained at global controller level to enable end-to-end 
communication. Local controller has the custody of that 
particular data-center or cloud and its resources. All VMs 
belonging to that application within that data-center are 



instantiated and managed by the local controller. Depending 
on the total VMs available and capacity of each VM, local 
controller reports total available resources to global controller.  

 

 
Fig. 2: Detailed block diagram of OpenADN (Source: [1]) 

 
The network operators may connect to the system using 

proxy servers. Demands for the resource are monitored by the 
global controller, which performs the load balancing and 
sends commands to local controller regarding how many 
instances of each BBU service need to be started and on which 
particular VM instance. For further details on OpenADN 
architecture, the communication mechanism and message 
formats, please refer to the works in [1, 3, 6].  

In this work, we propose development of APIs for 
OpenADN at local controller level, so that the required VM 
instances may be launched automatically and made available, 
as user demands vary. Whenever the commands are received 
from global controller, the required virtual machine instances 
can be brought up (or instantiated) automatically at the local 
site using local controllers. Once VMs are up and running, 
required BBU functionalities can be deployed on these VMs. 
In this work, we focus on integration of OpenADN with 
OpenStack, calling the novel platform as Multi-Cloud 
Application Delivery Platform (MCAD). We believe the work 
can be extended for other platforms such as EC2 or Google 
Cloud and others. In Section III, we describe our proposed 
solution for the integration between local controller of 
OpnADN and cloud management software OpenStack.  
 

III. PROPOSED SOLUTION 
 
We now present our proposed Multi-Cloud Application 

Delivery Platform (MCAD) for the end-to-end automated 
delivery of the BBU services. MCAD is an architecture, which 
is a combination of application delivery platform OpenADN, 
virtualization software such as OpenStack [4] and a set of 
communicating APIs. Fig. 3 shows the proposed MCAD 
architecture. We propose to develop an API layer between 
OpenADN (local controller module of OpenADN to be 
precise) and cloud management platform, such as OpenStack. 
The API layer is a separate entity so that it can be extended 

easily for other platforms as well. In this work, we concentrate 
on the integration between OpenADN and OpenStack. Though 
API layer is a separate entity, it is under custody of the 
OpenADN platform, as the local controller will be invoking 
the API scripts to launch the required VMs on the physical 
machines using OpenStack. Once the VMs are launched, “host 
script” automatically runs on the VMs. Host script guides VM 
to connect to local controller for further operations. 
Depending on the number of virtual functions for a given 
service, and their instances, load balancing algorithm launches 
various instances on the available VMs. The soft-routing table 
is maintained by OpenADN to keep track of which virtual 
function is launched on which IP and listening on which port 
number, so that a smooth end-to-end communication is 
achieved. For more details on the various communication 
aspects of the OpenADN, please refer to the works in [1, 3, 6] 
as the detailed discussion of OpenADN is out of scope of this 
article. 

 
Fig. 3: Approximate schematic representation of MCAD Architecture 

#! /bin/bash 
# 1-To create a new snapshot of a running VM 
nova image-create <instanceid>  <name of snapshot> 
# It may be <instanceid> or <name of the original VM> 
#2- To view the status of the created snapshot 
nova image-show <name of snapshot> 
nova image-list 
# 3- To download the snapshot 
glance image-download <Image ID> --file filename 
# 4- To create upload the snapshot image to OpenStack if it does 
#not exist   
glance image-create --name "name of the image" \ 
        --is-public <true/false> \ 
        --disk-format <DISK_FORMAT> \ 
        --container-format <CONTAINER_FORMAT> \ 
        --file <image path> 
#Disk format in our case is qcow2 and container format is BARE 
#5- login to VMs  
ssh -i /home/appfabric/.ssh/id_rsa.pub ubuntu@PrivateIp 
#Or for GUI: 
ssh -l /home/appfabric/.ssh/id_rsa.pub -Y ubuntu@PrivateIp 

 
Algorithm 1: Scripts to create VM snapshots. 

 



API communicates with API handling layer of OpenStack 
on South side. On the North-side, it is connected to the output 
channel of the local controllers of MCAD. We now describe 
the development of API layer and scripts that are developed to 
build a set of APIs. Sample script developed for this purpose 
is specified in the Algorithm 1. Please note that a set of VM 
images are already prepared using OpenStack and a pool of 
such VMs is available in-hand. That is, for the first time 
execution, a script file in Algorithm 1 needs to be invoked to 
create snapshots of the available VMs. However, the 
snapshots of these VMs may be launched whenever needed at 
runtime using simpler invocation commands only. The script 
files are invoked from the local controller module of MCAD 
after a communication channel is established between the 
global controller and the local controller. Algorithm 2 shows a 
script to launch the VMs from the available snapshots created 
in the earlier steps. Again, inline comments in the script 
explain the respective commands in detail. For more details on 
the concepts such as Fixed IPs, Floating IPs, Security Groups, 
Key-pairs and others, readers are requested to refer to the 
OpenStack documentation [4]. 

 
#! /bin/bash 
# Openstack needs ssh keypairs to make image 
#Read corresponding values here.  
# To create 2 VMs 
for i in range(1,3): 
#assigning floating ip to the public network to 
#to be connected with the Internet 
floating_ip = 
nova.floating_ips.create(nova.floating_ip_pools.list()[0].name) 
print ("Public Ip address for vm %2d is: %s" %(i,floating_ip.ip)) 
#assigning the image os 
image = nova.images.find(name="ubuntu") 
#assigning the flavor 
flavor = nova.flavors.find(name="m1.small") 
#attach the vm with a network 
network = nova.networks.find(label="private")  
#creating the vm  
server = nova.servers.create(name = "vm%d"%(i), 
                                 image = image.id, 
                                 flavor = flavor.id, 
                                 network = network.id, 
                                 key_name = keypair.name) 
statusOfVm=server.status 
server.add_floating_ip(floating_ip) 
#Set the security rules and print the status. 

Algorithm 2: Scripts to launch VMs from the snapshots. 
 

Fig. 4 shows the schematic representation of OpenStack 
architecture and displays where exactly our APIs execute from 
OpenStack perspective. Our API layer communicates with 
API handling layer of OpenStack on South side. On the north-
side, it is connected to the output channel of the local 
controllers of MCAD. We have used Ubuntu 14.04 as an 
operating system (OS) [7, 8]. Both MCAD and OpenStack are 
compatible and work well with the specified flavor of this 
operating system. We have preferred Python and BASH 
scripting language to write the APIs as these scripting 

languages are compatible with most of the existing systems 
and are easy to implement as well [5].  

 

 
Fig. 4: Approximate schematic representation of the OpenStack 

Architecture (Source: [1]). 
 
A set of script files can be written and made available using 

the API layer for various cases, such as different invoking 
different types of VMs or allocating different resources to the 
VMs and others. A particular script file is invoked from local 
controller based on the user traffic load so that required 
number and type of VMs may be launched. A parameter for 
average load per VM is specified in the configuration file for 
local controller. This parameter specifies what should be the 
maximum load on each VM. Please note that a care has to be 
taken to modify the port numbers and IP addresses in these 
scripts as per the system under consideration. We have tried to 
use as generic variables as possible, however under some 
circumstances the values might vary. Also, please note that 
these scripts need to be supported by other scripts to read 
environmental variables and other credentials such as user-
name and password, which are not included in this work. 
Inline comments in these scripts explain the respective 
commands in detail. Nova component controls the cloud 
computing fabric in OpenStack. Nova interfaces with several 
other OpenStack services. Nova communicates with Glance to 
supply images of the VMs [4]. In short, with the help of 
Glance, Nova provides virtual servers upon demand. To login 
into the VMs created, user needs to use Secured Shell (SSH) 
with the private IP of that VM. Later on, the script files are 
invoked from the local controller module of MCAD as per the 
user demands, to launch the VMs. In the next section, we 
discuss the implementation aspects of the proposed solution 
and discuss our observations.  

 
IV. IMPLEMENTATION AND OBSERVATIONS 

 
In this section, we describe our experimental evaluation. 

The VMs may be launched or shut down as per the user 
demands and requirements vary. Depending on the number of 
users, the number of required VMs is calculated by a simple 
mathematical calculation given below. For example, consider 
a simple scenario where a set of BBU functionality consists of 
three services. Let us assume each service can handle 100 user 



requests per second and the network operator needs to handle 
200 user requests per second. This means the operator needs 
two instances of each VNF, that is in total six (3 × 2) VNFs to 
be deployed. Also, let us assume each service instance needs 
25% of VM resources and we have three VMs, which are 
ready to be launched. If load parameter is set to 80%, then 
each VM can accommodate total three instances of the VMs 
(since it will make total load on VM equal to 25 × 3= 75%). 
Hence, we need only two VMs to be launched. However, if 
the load parameter is set to 60%, each VM can accommodate 
only two instances of each service, mandating all three VMs 
to be launched. Sophisticated data-plane management 
software such as OpenDaylight [15] maybe integrated with 
MCAD using similar set of APIs to achieve flexible control 
over the underlying data-plane. 

 

 
Fig. 5: State Diagram of the complete System. 

 
A state diagram of the VMs and OpenStack is shown in Fig. 

5. The system initializes itself and stays at the initializing state 
until all the controllers are ready. OpenStack module will also 
be in a started state and then it will move to initializing state. 
Once OpenStack shifts to connected state, that is, a successful 
connection between local controller module and OpenStack 
module is established, the system will be in ready state and it 
can receive requests messages.  

 

 
Fig. 6: 3-Node topology for testing. 

As soon as it receives a request for VM creation from the 
local controller, it will move to “Creating VM” state. Virtual 
machines will be initialized. Once they are active, OpenStack 
module will be notified accordingly. Finally, the services will 
be instantiated on appropriate VMs and a soft-routing table 
created by MCAD module will enable end-to-end 
communications. To test the APIs, we have created a 3-node 
topology where each node may be considered as a cloud or a 
data-center as shown in Fig. 6. We have used laptops with 8 
Gbps RAM and quad-core CPU at 2.7 GHz to represent a 
data-center at each node. Each laptop is equipped with 
Ubuntu, OpenStack and MCAD installed on it. Generally, 
BBU functionalities are a set of inter-dependent services, 
where traffic flows among various instances of services to 
complete the functionality [19]. We call such interconnection 
among various instances of the services as a workflow. We 
have considered a workflow with five services (called Nodes) 
to represent a complete BBU functionality. Please note that 
the number five is just for the convenience and actual BBU 
functionality many have different number of services. The 
workflow file represents a flow of services to complete a 
particular functionality at BBU. The workflow we have 
considered for our testing purpose is given in the Fig. 7. We 
use XML to represent such workflows. Each node represents a 
service and connections among services are shown with output 
and input ports.  

 
Fig. 7: Workflow used for testing (Source: [1]). 

 
We have generated dummy HTTP client requests for the 

testing purpose. We generate 2000 such requests per second. 
Each request needs to be traversed through each service 
mentioned in the workflow to emulate a satisfied or fulfilled 
user demand. Also, three snapshots of the VMs are created 
using the script shown in Algorithm 1, which are ready to be 
launched with the help of APIs, whenever required. Each 
service performs some dummy tasks consuming 40% of RAM 
and CPU of the VMs. Load parameter for the VMs is set to 
80%. For five services of the workflow to be execute, all three 
VMs need to be executed. We observe that, a successful 
communication channel is established between MCAD and 
OpenStack using the APIs, with all three VMs launched 



successfully. Load balancing is achieved on all three VMs as 
expected. The experiment demonstrates successful and smooth 
functioning of the APIs for OpenStack achieving end-to-end 
automation in deployment of the BBU functionality in the 
virtualized pool of the resources using MCAD. As indicated 
earlier, the work can be extended to accommodate the APIs 
for other cloud management platforms such as EC2, Google 
Cloud, Azure and many others. In addition, we believe that the 
work done for the control-plane integration can be easily 
extended to integrate data-plane management software such as 
OpenDaylight with MCAD. Similar set of APIs may be 
developed to automate the communication between MCAD 
and OpenDaylight to achieve a sophisticated control over the 
data-plane, which will provide more flexibility over traffic 
flows and interconnectivity among the service instances at the 
collocated BBUs. 

 
V. CONCLUSIONS 

 
In this work, we have proposed a solution to achieve 

automated end-to-end service delivery for baseband units in C-
RANs using Multi-Cloud Application Delivery Platform 
(MCAD) platform, an extension of OpenADN and the 
OpenStack cloud management software. We have developed a 
set of APIs, which successfully communicate with MCAD and 
OpenStack and interchange the commands. The required 
virtual machines for the delivery of the services are instantiated 
automatically by forwarding the commands from local 
controller of MCAD to OpenStack with the help of these APIs. 
Various virtual machine configurations can be specified using 
the parameters in the APIs. We also demonstrated the usability 
of the proposed solution with a three-node setup. We assumed 
dummy services for a hypothetical cellular network operator 
and demonstrated successful deployment. Same methodology 
can be used to extend the interoperability of MCAD with other 
cloud management platforms such as EC2, Google Cloud, 
OpenDaylight and others for efficient and scalable C-RAN 
platform, to fully leverage the advantage of cloud computing.  
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