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Abstract
Intrusion detection in supervisory control and data acquisition (SCADA) systems is in-
tegral because of the critical roles of these systems in industries. However, available ap-
proaches in the literature lack representative flow‐based datasets and reliable real‐time
adaption and evaluation. A publicly available labelled dataset to support flow‐based
intrusion detection research specific to SCADA systems is presented. Cyberattacks
were carried out against our SCADA system test bed to generate this flow‐based dataset.
Moreover, a flow‐based intrusion detection system (IDS) is developed for SCADA sys-
tems using a deep learning algorithm. We used the dataset to develop this IDS model for
real‐time operations of SCADA systems to detect attacks momentarily after they happen.
The results show empirical proof of the model’s adequacy when deployed online to detect
cyberattacks in real time.

1 | INTRODUCTION

Industrial control systems (ICSs) use a diverse set of technol-
ogies to control and monitor industrial processes. ICSs include
several systems such as supervisory control and data acquisi-
tion (SCADA) systems, remote terminal units, and distributed
control systems [1]. ICSs are generally used in critical in-
frastructures such as power transmission and distribution, oil
and gas, nuclear, and other industries where high availability is
crucial.

Historically, ICSs were designed to operate on networks
that were not connected to the Internet. However, Industry
4.0, also known as Industrial Internet of Things (IIoT), makes
Internet‐based ICS feasible [2]. These advances expose ICSs to
cyberspace and introduce the possibility of cyberattacks
through the Internet. An ICS‐related security review reported
more than 400 ICS vulnerabilities in 2019, in which more than

100 were zero‐day vulnerabilities [3, 4]. Zero‐day vulnerabilities
are previously unseen attacks capable of exploiting the system
for a long time until they are discovered.

Over the years, an extensive effort was made by the
research community to identify and mitigate prevalent vul-
nerabilities that these systems face after integrating Internet
technology (IT). The techniques and industrial standards for
the cybersecurity of the ICS/SCADA system have been sur-
veyed widely in different papers such as Zolanvari et al. [5] and
Zhu and Sastry [6].

It is challenging to detect and prevent sophisticated attack
incidents using traditional rule‐based information technology
approaches. Hence, there is a need for new IDS mechanisms
for ICS capable of intelligently detecting out‐of‐ordinary
events. Machine learning (ML) and deep learning (DL) algo-
rithms are increasingly being used to constitute smart and
efficient IDSs dedicated to ICSs.
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The general approach to developing DL‐based security
systems in the literature consists of training the models using
labelled network traces obtained from publicly available data-
sets [7]. These datasets include sets of intrusions and abnormal
traffic, along with the standard traffic network behaviours [8].
Generally, the network traffic is captured in either packet‐based
or flow‐based format. Packet‐based data encompass complete
payload information whereas flow‐based data are more
aggregated and usually contain only metadata from flows, that
is, network connections [9]. Despite the richness of contribu-
tions in this field, providing a benchmark for publicly available
flow‐based datasets is still an open issue in IDS for ICS
research. The performance of any intelligent IDS depends
highly on the dataset used.

Moreover, the malware landscape is evolving rapidly, along
with frequent changes in the attack strategies. Therefore, the
datasets become outdated quickly. As a result, it is crucial to
have up‐to‐date datasets.

A flow‐based dataset developed for ICS cybersecurity
research is presented, along with a unique flow‐based IDS
using DL. The ICS platform used is our SCADA system test
bed [5, 10, 11]. Cyberattacks were conducted on the SCADA
system test bed, and the network traffic was captured. The
features of the network traffic were extracted. After extensive
data preprocessing (including data cleaning and labelling), these
features have been used to build a flow‐based dataset ready for
training. The DL algorithm studied is the deep artificial neural
network (ANN). After training and testing, the DL model is
embedded into our proposed IDS and deployed in the SCADA
system network. Its efficiency to detect the attacks in real time
is analysed. The performance evaluation of our IDS is studied
in two phases: offline and online. The offline phase consists of
training and testing the DL algorithm using the flow‐based
dataset. The online phase is composed of the trained model
deployed in the SCADA test bed and testing it, using real‐time
network traffic. Afterwards, the results in the offline and online
phases are compared.

The main contributions of this work are as follows:
(1) development of a new flow‐based dataset to be used
in cybersecurity research that will be available for down-
load and can be used in new cybersecurity research
works; (2) development of a unique flow‐based IDS using
a DL algorithm; (3) integration of this model in an ICS
to detect cyberattacks in real time; and (4) performance
comparison of offline and online versions of a DL‐based
IDS.

We have organised the rest of this work as follows.
Section 2 presents an overview of the current status of
cybersecurity research in this field, our prior works, and
other related works. Section 3 highlights the deep ANN
model and performance measurement metrics. In Section 4,
the attacks performed against the test bed are discussed, and
the network features that compose the dataset are described.
The proposed flow‐based IDS for ICS is presented in
Section 5, followed by Section 6, where the numerical results
are provided. Finally, Section 7 presents a summary of our
conclusions.

2 | BACKGROUND

In this section, we provide a brief background on cybersecurity
systems and their specifications. We also highlight our prior
work and the state of the art related to this topic.

2.1 | Cybersecurity system overview

Cybersecurity researchers aim to maintain the confidentiality,
integrity, and availability triad of information through various
cyberdefence systems to protect computers and networks from
attacks [12]. Traditional cybersecurity systems address various
cybersecurity threats, including spam, botnets, trojans, viruses,
etc. Generally, cyberdefence systems combat cyberthreats at
two levels, network and host, providing network‐ and host‐
based defence. Figure 1 shows these two levels of traditional
cybersecurity systems.

In a network‐based defence architecture, security is pro-
vided at the network traffic level by monitoring all traffic
coming from the outside into the system. In the host‐based
defence, security is ensured on each workstation separately
inside the system. In our work, the focus is on the network‐
based intrusion detection system (IDS).

The IDS monitors network traffic searching for malicious
activity or threats and sends out alerts when it discovers such
attacks. Intrusion detection methods used by IDSs can be
classified as misuse‐based (also known as signature‐based),
anomaly‐based, or hybrid [12]. The misuse‐based IDS is
designed to detect known attacks by using signatures of the
attacks; thus, it is more practical in detecting known types of
attacks. The anomaly‐based IDS is designed to learn normal
traffic behaviours and identify anomalies as deviations from
normal behaviours. This technique is more useful in detecting
unknown attacks (i.e., zero‐day attacks). The hybrid method
combines misuse‐based and anomaly‐based methods to iden-
tify any sort of threats.

2.2 | Industrial control system security
versus traditional Internet technology security

In the past, the ICSs were assumed to be protected against
cyberattacks. This is because the ICS networks were isolated
from the world, running proprietary control protocols, and
used specialised hardware and software. In 2010, the Stuxnet
virus [13] showed that this statement is not valid. Despite not
being connected to the Internet, traditional ICSs are not pro-
tected. Since then, the environment of the ICSs has changed.
IT solutions are being adopted to promote corporate con-
nectivity and remote access to ICSs, such as transferring data
production to the company’s IT system as well as remote
maintenance. Modern ICSs are connected to the Internet;
therefore, risks for attacks against ICSs have substantially
increased. Some models have been proposed to structure ICS
architecture and organise it hierarchically [14]. One example is
Purdue’s model [15], shown in Figure 2.
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As seen in Figure 2, Purdue’s model divides the ICS ar-
chitecture into zones and levels. Each level highlights func-
tional components meant for different control and security
levels expected from the layer [16]. The top levels (Levels 4
and 5) in the Enterprise zone are related to IT‐like compo-
nents, and the lower levels denote the edge network and
ICS‐like elements. Thus, the architecture offers a useful model
for distinguishing between IT and ICS. The details of the
modern ICS architecture shown in Figure 2 are described in
Ackerman [15]. It provides network and security services to the
devices, equipment, and applications found in a standard ICS.

ICSs have evolved from being traditional IT systems to
controlling complex physical processes in critical in-
frastructures, whereas traditional IT systems are used to
manage the data [1]. Both systems have different operational
characteristics, risks, and priorities [1, 17, 18]. For example, the
risks in ICSs include significant consequences to human health
and safety, severe damage to the environment, and financial
issues such as production loss. The security mechanisms used
in a traditional IT system are not adequate to protect an ICS.
Therefore, it is vital to develop new security mechanisms to
safeguard ICSs, and in our case, the SCADA systems.

2.3 | Our prior work

In Teixeira et al. [10], we presented a SCADA system test bed
used for cybersecurity research. Cyberattacks were conducted
against the test bed and five network features were selected to
compose the dataset. In this work, we selected 19 features to
compose a new dataset, and a DL algorithm is trained to detect
the attacks in real time.

In Zolanvari et al. [11], we studied the problem of an
imbalanced dataset facing the training process of ML algo-
rithms, which is a pragmatic challenge in the security of IIoT. It
was shown how ML falls short when it comes to real‐world
security scenarios, and obstacles in applying these methods
in real industrial settings. Different performance metrics and
how they are affected by the imbalance were presented.

In Zolanvari et al. [5], we improved the test bed presented
in Teixeira et al. [10] by integrating new kinds of attacks and
data flows in the test bed. A comprehensive ML‐based risk
assessment when countering the most relevant cyberattacks in
IIoT systems was presented.

A survey of the cybersecurity of ICSs is presented in
Bhamare et al. [19], in which we studied the state of the art
when it comes to upgrading the security of these systems from
stand‐alone local units to cloud‐based approaches.

However, here, we use a flow‐based dataset with relevant
cyberattacks. The attacks are carried out against our test bed.
The number of features used to compose the dataset has
increased, and we use an ANN DL algorithm to train our
model. Another difference from the previous works is that we
analyse the performance of the ANN to detect attacks in real
time. The flow‐based dataset developed will be available for
download to the research community. Our previous dataset
from Teixeira et al. [10] is also available for download [20].

2.4 | Related work

Almost all existing research work in this domain used few pub-
licly available datasets to train and test ML and DL algorithms.
However, datasets from ICS networks are scarce compared with
the numerous publicly available datasets for traditional IT net-
works. Whereas ML and DL algorithms have been applied in
designing IDSs, to the best of our knowledge, real‐time appli-
cation of these algorithms on a well‐represented SCADA
network has not yet been studied. Some available research work
on anomaly detection in ICS is described subsequently.

A survey of existing datasets used in cybersecurity research
is provided by Ring et al. [21]. The datasets are classified into
packet‐based or flow‐based categories. It is easy to verify that
none of the existing datasets are specific to ICS security, and
they mostly use a packet‐based format. Our dataset is built
using a flow‐based format specific to ICSs; it is a better option
for cybersecurity research.

Ferrag et al. [22] present a surveyofDL approaches for IDSs,
in which 35 well‐known datasets used in DL cybersecurity
research are described. The authors highlight that the commu-
nity lacks datasets for cybersecurity research and emphasize the
importance of having new and up‐to‐date datasets.

F I GURE 1 Traditional cybersecurity systems [12]

F I GURE 2 Purdue model [15]
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The lack of datasets to develop efficient IDSs is discussed
as a significant problem by Malowidzki et al. [23]. Their
discussion includes a set of requirements to obtain proper
datasets. They state that available research works do not meet
these requirements with the datasets they have used. We fulfil
these requirements described in Malowidzki et al. [23] to obtain
our flow‐based dataset.

Youbiao He et al. [24] use DL techniques to discover the
behaviour of false data injection attacks in smart grids. The
attacks are detected in real time by analysing historical mea-
surement data and the captured features. We explore DL
techniques to detect three different types of attacks: command
injection, denial of service (DoS), distributed denial of service
(DDoS), and reconnaissance.

Yan and Yu [25] developed a detection system using DL to
obtain features from sensor measurements of exhaust gas
temperatures. The features are used as the input to a neural
network classifier to perform combustor anomaly detection.
Using real‐world data collected from a gas turbine combustion
system, the researchers demonstrated that DL‐based anomaly
detection significantly improves the combustors’ anomaly
detection performance. Here, the DL algorithms learn the
linear and non‐linear relationships between features from
normal and abnormal network traffic. They then use it to
perform attack detection in real time.

In [26], Niyaz et al. propose a DL‐based approach to
implement an effective and flexible network intrusion detec-
tion system. They use self‐taught learning, a DL‐based tech-
nique, on the NSL‐KDD dataset, a benchmark dataset for
network intrusion. We built a new dataset for use in cyberse-
curity research. Our target networks are those that have been
used in the ICS/SCADA systems. Some attacks analysed are
specific to the ICS/SCADA systems and are not implemented
on benchmark datasets such as NSL‐KDD.

Yin et al. [27] propose a DL approach to intrusion
detection using recurrent neural networks (RNNs). They study
the performance of the RNN model in binary classification
and multiclass classification and compare its performance with
some traditional ML algorithms also used in classification.
They studied the performance of these algorithms using the
benchmark NSL‐KDD dataset. As mentioned, the NSL‐KDD
dataset does not have specific ICS/SCADA attacks.

Fernandes et al. [28] present labelled datasets for SCADA
networks for use in cybersecurity research. Their datasets
include packet captures from both malicious and non‐
malicious network traffic. However, their datasets are gener-
ated using a simulated environment, which is not a good
representative of a real‐world plant.

3 | DEEP LEARNING ALGORITHMS
AND PERFORMANCE METRICS

This section describes the DL algorithm used in this work,
along with the performance metrics used to evaluate the
performance.

3.1 | Deep learning model

DL solutions have proven their effectiveness in different ap-
plications, including speech recognition [29–31], computer
vision [32, 33], and natural language processing [34, 35].
Examples of common DL models include ANN, convolutional
neural network, and RNN. We use an ANN model, which is a
supervised DL model requiring a dataset with labelled samples.
Figure 3 shows an ANN example.

As seen in Figure 3, an ANN consists of an input layer,
multiples hidden layers, activation functions, and an output
layer. Every node in a layer is connected to a subset of nodes in
the next layer. The ANN becomes deeper by increasing the
number of hidden layers. Deep neural networks can solve
problems with high complexity and address more challenging
learning tasks than shallow neural networks [27]. In this work,
the IDS analyzes network traffic behaviour to identify whether
an attack is happening, which is a classification problem using
an ANN algorithm. Figure 4 shows in a simple way how the
ANN works in the IDS context. For more technical details
about the ANN algorithm, we refer the readers to other work
[27, 32–35].

The left circles shown in Figure 4 represent features of
the network flow, which are the input features used in the
input layer. The circle in the middle represents an artificial
neuron, and the right circle represents the output, which can
be zero (no attack) or 1 (attack). Every input has a weight
(w), and the weighted sum of the inputs triggers the acti-
vation function (shown inside the artificial neuron) to obtain
one output from the neuron. This example consists of only
one layer. However, in the case of an ANN with more
layers, the outputs of each layer are used as inputs for the
next layer. During training, the weights are trained and
adjusted so that the model can distinguish the normal traffic
from anomalous traffic. This is done using a back-
propagation technique [36, 37]. In this case, as shown in
Figure 4, the predicted output (ŷ) is compared with the
expected output (y), and cost function C is used to mini-
mise the difference.

The activation functions have an essential role in neural
networks and are a crucial component of DL models. Acti-
vation functions decide whether an artificial neuron should be
activated. This means determining whether the information
that the neuron is receiving is relevant or should be ignored.
Hence, the activation function affects the DL model’s output,
accuracy and the computational efficiency of the ANN model.
There are several activation functions, each designed for a
different application. In our work, we use two different
activation functions: rectified linear unit (ReLU) [36] and sig-
moid [37].

3.2 | Performance metrics

The performance of the ANN is analysed by metrics derived
from the confusion matrix [38] (Table 1).
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The following performance metrics, derived from the
confusion matrix, are used to evaluate the proposed ANN‐
based IDS:

� Accuracy (AC): It indicates the percentage of the total traffic
that is classified correctly:

AC ¼
TP þ TN

TP þ TN þ FP þ FN
� 100 ð1Þ

� False alarm rate (FAR): It is the percentage of normal traffic
that is incorrectly classified as abnormal traffic (attack) by
the model:

FAR¼
FP

FP þ TN
� 100 ð2Þ

� Undetected rate (UND): It represents the fraction of
abnormal traffic (attack) that is incorrectly classified as
normal traffic by the model:

UND¼
FN

FN þ TP
� 100 ð3Þ

� TP rate (TPR): It is the fraction of attack traffic that is
correctly predicted as an attack by the model:

TPR¼
TP

TP þ FN
� 100 ð4Þ

� Receiver operating characteristic (ROC) curve: It is a
graphical analysis of the TP rate (Equation 4) plotted versus
the UND (Equation 3). The ROC curve is used to visualise
the performance of the binary classifier.

4 | DEVELOPMENT OF FLOW‐BASED
DATASET

This section describes attacks conducted against the SCADA
system, the network feature selection, and the development of
our flow‐based dataset. Different datasets are used to analyse
network traffic, such as the KDD99 dataset, which is a well‐
known benchmark, as well as its derived versions (e.g., NSL‐
KDD). However, these datasets are outdated and are not
representative of today’s traffic for SCADA systems cyberse-
curity research. For this reason, there is a need to build a new
flow‐based dataset that represents network traffic containing
various specific SCADA systems. The produced dataset a
contribution of this work.

4.1 | Our supervisory control and data
acquisition system test bed

The current experiments were conducted using our SCADA
system test bed. Figure 5 illustrates a simplified schematic view
of this SCADA system test bed. For more technical details
about the SCADA test bed, we refer the reader to. [5, 10, 11]

As shown in Figure 5, the SCADA network interconnects
field devices (physical process monitors), human–machine
interfaces (HMIs), engineering workstations, Argus server,
and proposed flow‐based IDS. Argus is a real‐time network
flow monitor system [39] developed and adopted for
cybersecurity at Carnegie Mellon’s Software Engineering
Institute. The Argus system works based on a client–server
paradigm. The Argus server tracks and reports transactions
detected through network interfaces. The Argus client is
used to access data monitored and stored by the Argus

F I GURE 3 Artificial neural network example

F I GURE 4 Artificial neuron example

TABLE 1 Confusion matrix

Predicted Class

Normal Abnormal

Actual class Normal True negative (TN) False positive (FP)

Abnormal False negative (FN) True positive (TP)
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server. As shown in Figure 5, the Argus server is connected
to the Ethernet switch of our SCADA system test bed. The
switch port, to which the Argus server is connected, is
configurated with the mirroring function. Then, all SCADA
network traffic (normal traffic and attack traffic) is mirrored
to that specific port. Thus, the network flow is stored for
further processing and analysis.

A network flow can be defined as a set of packets going
from a specific source host to a particular destination host
through the network. Packets belonging to the flow have a set
of standard features, such as ports and protocols. Figure 6
shows an example of the network flows stored by the Argus
server.

Each row of the table depicted in Figure 6 represents a
network flow, and each column indicates a feature of the flow.
The DL algorithm uses all of the network features described in
Table 2 to identify malicious traffic. The feature selection
process is described next.

4.2 | Feature selection

Selecting and extracting features from the dataset is an essential
part of any ML/DL analytics. An ideal feature for network IDS
would be a feature that changes during attacks. That means
that the state of the feature should vary during the attack. If the
selected features do not change during the attack and normal
state, even the best algorithm will not detect an anomaly. We
have picked features that are common in a network flow and

also show variations during the attacks. Table 2 shows selected
features used in this work.

Variations in selected features depend on the attack type.
Figure 7 shows an example of traffic behaviour during a DoS
attack against our programmable logic controller (PLC).

As shown in Figure 7, the attack phase is represented by
red and the normal scenario by blue. Under normal conditions
(without attack), the SrcPkts and DstPkts features have peri-
odic behaviour. However, during the attack, traffic behaviour
has changed. The number of packets sent (SrcPkts) varies
during the attack phase, making the PLC out of service and not
transmitting any packet during the attack (DstPkts is zero). We
picked SrcPKts and DstPkts as an example here; the same
concept applies to other selected features in Table 2.

4.3 | Attack scenarios

The attacks described in this subsection were conducted
against our SCADA system test bed shown in Figure 4. Our
SCADA system monitors and controls the water level in the
water storage tank. Different tools were used to attack
the SCADA system test bed. The attacks performed against the
test bed and the tools used are described in Table 3.

A brief description of each attack is provided next. More
details can be found elsewhere [41–44].

� Reconnaissance: Reconnaissance is the first stage of an
attack. In this stage, using network scan tools, hackers try to

F I GURE 5 Simplified supervisory control and
data acquisition system test bed

F I GURE 6 Network flows stored by the Argus server
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find the topology of the target network. The goal of this
attack is to get a list of the devices deployed on the target
network as well as their vulnerabilities. Each reconnaissance
attack performed against the test bed is described in
Calderon [42].

� Command injection: In this attack, hackers try to send
malicious Modbus commands to affect the normal pro-
duction process. Some examples, in our case the tank sys-
tem, include turning on the pump and turning off the
sensors remotely, and making the water level exceed the
threshold level without sending an alarm to the system’s
operator.

� DoS and DDoS: These attacks target the availability
of the PLC and make all services unavailable. This
can result in a severe impact on the system’s
production.

The attacks shown in Table 3 were carried out using the
Linux BlackArch Penetration Testing Distribution [45]. All
data generated during the attacks, as well as regular traffic
(without attacks), were gathered and recorded by the Argus
server, as shown earlier in Figure 5. The observations
consist of more than 40 features of the network traffic.
However, we selected 19 features for use by the proposed
IDS. Statistical information of the captured traffic is listed in
Tables 4 and 5.

4.4 | Network flow labelling process

The DL algorithm used in our flow‐based IDS is an ANN
model. The ANN is a supervised algorithm. This means that it
is necessary to have a labelled dataset to train and test the
model. Thus, all network flow stored by the Argus server is
classified and labelled in accordance with the type of attacks
described in Table 3. Figure 8 shows a sample of the network
flow labelled in our dataset.

Our dataset is composed of normal flows and eight
different types of attacks, as described in Table 3. As shown in
Figure 8, column traffic of the dataset specifies whether the
network flow is normal (without attack) or an attack. Each
attacked flow is classified by its type.

5 | PROPOSED ONLINE INTRUSION
DETECTION SYSTEM FOR INDUSTRIAL
CONTROL SYSTEM/SUPERVISORY
CONTROL AND DATA ACQUISITION
SYSTEMS

The flow‐based IDS analyzes network flow to detect
anomalies in the network instead of conducting deep‐packet
inspection. Figure 9 presents the proposed flow‐based IDS
framework.

TABLE 2 Features in the dataset
captured using Argus

Features Type Descriptions

Mean flow (mean) Float Average duration of active flows

Source port (Sport) Integer Source port number

Destination port (Dport) Integer Destination port number

Source packets (SrcPkts) Integer Source/destination packet count

Destination packets (DstPkts) Integer Destination/source packet count

Total packets (Tpkts) Integer Total transaction packet count

Source bytes (Sbytes) Integer Source/destination bytes count

Destination bytes (Dbytes) Integer Destination/source bytes count

Total bytes (TBytes) Integer Total transaction bytes count

Source load (Sload) Float Source bits per second

Destination load (Dload) Float Destination bits per second

Total load (Toad) Float Total bits per second

Source rate (Srate) Float Source packets per second

Destination rate (Drate) Float Destination packets per second

Total rate (Trate) Float Total packets per second

Source loss (Sloss) Float Source packets retransmitted or dropped

Destination loss (Dloss) Float Destination packets retransmitted or dropped

Total loss (Tloss) Float Total packets retransmitted or dropped

Total percent loss (Ploss) Float Percent packets retransmitted or dropped
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As shown in Figure 9, the IDS framework consists of two
main modules: offline and online. The offline module is
described next.

5.1 | Offline module

The offline module is used to train and test the DL algorithm.
This is made in two phases (training and test), as shown in
Figure 9. The flow‐based dataset, defined in Section 4, is used
in the offline module. The dataset is split into two sets in which
80% of the dataset is used to train the model (training data in
the training phase) and 20% is used to test and evaluate the
model (testing data in test phase). The training phase consists
of the following steps:

(1) Training data: part of the dataset to be used in the training
process

(2) Feature extraction: extracts features defined for each flow
stored in the training data

(3) Feature normalisation: features extracted in the previous
step are normalized for use as input to the DL algorithm

(4) DL algorithm: the ANN algorithm is effectively trained
using the labelled dataset. Any other DL algorithm could
be used in this step.

The features normalisation is made using the formula:

xnormalized ¼
ðx − uÞ
s

ð5Þ

where x is the raw data that will be normalized; u is the mean
of the data and s is the standard deviation of the data.

As mentioned in Section 4.4, each row of the training
dataset is labelled as an attack or not an attack. Afterwards,

the DL will learn the parameters of a predictive model.
When the DL model is trained, the evaluation of the
trained model starts. This is made in the test phase, as
shown in Figure 9. The test phase consists of the following
steps:

(1) Testing data: part of the dataset used in the test process
(2) Feature extraction: extracts features defined for each flow

stored in the test dataset
(3) Features normalisation: the features extracted in the pre-

vious step are normalized for use as input to test the DL
model

(4) Prediction: using the trained model, predictions are made
to verify whether a network flow is normal or an attack. In
this case, the testing data are fed to DL algorithms without
labels, and the model predicts their labels. All predicted
results are logged in a database.

(5) Then, the confusion matrix showed in Table 1 is calcu-
lated, and the performance of the DL model is evaluated
based on the metrics described in Section 3.2. The
confusion matrix is produced based on whether a sample
from either class is labelled correctly.

5.2 | Online module

The online module deploys the DL model previously trained
and evaluated using the offline module in real time. The online
module is connected to the Argus server. Therefore, all of the
network flow monitored by the Argus server is used as input to
the online DL model.

This module consists of the following steps:

(1) SCADA network traffic: the network flow is read from the
Argus server in real time. These flows are unseen and

F I GURE 7 Example of traffic behaviour
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different from the flow‐based dataset used in the offline
module

(2) Feature extraction: extracts the same features as those in
the offline phase from the network flow

(3) Features normalisation: extracted features are normalized
for use as input to the deployed DL algorithm

(4) Online predictions: the model predicts, in real time,
whether the network flow is an attack. All prediction re-
sults are logged in the dataset

(5) The confusion matrix is built again based on whether the
model has classified each sample correctly or incorrectly.
Attacks described in Table 3 were conducted against our
SCADA system test bed at specified times. Thus, it is
possible to verify the detection (attack or not attack) in real
time and compare the online results with the offline results.

TABLE 3 Attacks carried out against our test bed

Attack Category Used Tool Attack Name Attack Description

Reconnaissance Nmap Port Scanner [32, 33] This attack is used to identify common SCADA protocols on the network. Using the
Nmap tool, packets are sent to the target at intervals of 1–3 s. The TCP connection is
not fully established, so the attack is difficult to detect by intrusion detection systems
based on rules.

Reconnaissance Nmap Address scan [38] This attack is used to scan network addresses and identify the Modbus server address.
Each system has only one Modbus server, and disabling this device would collapse
the whole SCADA system. Thus, this attack tries to find the unique address of the
Modbus server so that it can be used for further attacks.

Reconnaissance Nmap Device identification
[39]

This attack is used to enumerate the SCADA Modbus slave IDs on the network and to
collect additional information such as vendor and firmware from the first slave ID
found.

Reconnaissance Nmap Device identification
[39]

This attack is similar to the previous attack. However, the scanning uses an aggressive
mode, which means that the additional information about all slave IDs found in the
system is collected.

Command
injection

Metasploit Modbus
client

Exploit [40] Exploit is used to read the coils values of the SCADA devices. The coils represent the
ON/OFF status of the devices controlled by the programmable logic controller,
such as motors, valves, and sensors [34].

DoS Synflood DoS SYN Flooding
[37]

In this attack, initial connection request (SYN) packets are sent to the PLC and HMI
ports, causing the targeted device to respond to legitimate traffic sluggishly or not at
all.

DDoS Bonesi DDoS botnet [37] In this attack, many packets coming from several Internet protocols are sent to PLC and
HMI computer.

DDoS Hyde DDoS with spoofing
[37]

This attack is similar to the previous one with a spoofing attack added.

Abbreviations: HMI, human–machine interface; SCADA, supervisory control and data acquisition; SYN, synchronize; TCP, Transmission Control Protocol.

TABLE 4 Statistical information on the traffic during the
reconnaissance and command injection attacks

Measurement Value

Duration of capture 25 h

Dataset size 1.27 GB

Number of observations 7,049,989

Average data rate 419 kbit/s

Average packet size 76.75 bytes

Port scanner attack packets 0.0003%

Address scan attacks packets 0.0075%

Device identification attack packets 0.0001%

Device identification attack packets (aggressive mode) 4.9309%

Exploiting attack packets 1.1312%

Total attack packets 6.0700%

Total normal packets 93.9300%

TABLE 5 Statistical information on traffic during the DoS attacks

Measurement Value

Duration of capture 25 Hours

Dataset size 1.25 GB

Number of observations 7,882,253

Average data rate 419 kbit/s

Average packet size 76.75 bytes

DoS SYN flooding attack packets 0.044%

Distributed DoS botnet attack packets 0.009%

Distributed DoS with spoofing attack packets 0.03 %

Total attack packets 8.590%

Total normal packets

Abbreviation: DoS, denial of service; SYN, synchronize.
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Figure 10 presents a flowchart of the online module.
The classification results are listed in a confusion matrix

and used to calculate the performance of the DL model.

5.3 | Artificial neural network model

As described in Section 3.1, the DL algorithm used in this
work is the ANN. Figure 11 illustrates the architecture used in
which each selected feature (Table 2) is composed of an input
to the ANN input layer.

As presented in Figure 11, the ANN architecture is defined
with one input layer, two hidden layers, and one output layer.
The input layer neurons are connected to the first hidden layer,
which in this example consists of nine neurons. The first
hidden layer is connected to the second hidden layer, also
composed of nine neurons. The second hidden layer is

connected to the output layer consisting of one neuron (the
answer neuron). The activation function used in the first and
second layer is the ReLU function, and the output layer uses
the sigmoid activation functions.

Current research states that the hidden layers of a neural
network should use ReLU activation [36]. One reason for this
is the computational performance and backpropagation
training. The ReLU activation function has better performance
than other activation functions for hidden layers; this is
because the ReLU activation function is a linear, non‐saturating
function, as shown in Figure 12. It is defined as:

RðxÞ ¼maxðx; 0Þ;

where, x¼
P
iwixi. Here xi is the ith feature value and wi is

the normalising weight for that feature.

F I GURE 9 Flow‐based intrusion detection system framework

F I GURE 8 Example of network flow labelled in our dataset
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The sigmoid function (or logistic function) is a non‐
linear activation function. This makes the result of a
neuron always between 0 and 1. We use the sigmoid func-
tion in our output layer. As mentioned, our IDS analyzes
network traffic behaviour to identify whether an attack is
happening, which is a classification problem. Figure 13
shows a graph of a sigmoid function and the equation used
in the output layer:

6 | NUMERICAL RESULTS AND
DISCUSSION

The empirical results of the proposed IDS are provided in this
section. The performance of the online module is compared
with the performance of the offline module.

Figure 14 shows the results of the accuracy metric, in
which the performance of detecting the DOS attacks and
reconnaissance/command injection (RCI) attacks are
compared. To calculate these results, we used Equation (1). As
mentioned, accuracy shows the percentage of total traffic that
is classified correctly.

As shown in Figure 14, accuracy in detecting attacks de-
creases during the online phase. For DoS attacks, in the online
phase, this decrease is minimal. However, for RCI attacks, the
difference is more substantial. Despite this, the online detec-
tion results can be considered satisfactory. This is because RCI
attacks are tough to detect, and also, in the real world, the
amount of traffic generated by RCI attacks is much less
compared with the amount of traffic generated by the DoS
attack. Therefore, they are more challenging to detect. We need
more training data to increase online accuracy when it comes
to detecting RCI attacks.

As in any real‐world scenario, the datasets used to train and
test the security are imbalanced. It is well‐known that accuracy
is not a useful metric to evaluate the performance of imbal-
anced datasets [11]. In this case, other metrics are required to
analyse the performance of the learning models further. The
FAR results are shown in Figure 15. The FAR metric repre-
sents normal traffic that has been erroneously classified as
abnormal traffic by the model (Equation 2).

Because this metric represents the percentage of false
alarms, the lower FAR value is considered better. Again, the
offline results show better performance compared with the
online results. The performance in detecting the DoS attack
online is better than that in detecting RCI attacks. This is again
the result of the lower number of training packets for the RCI
attacks compared with the standard packets.

Figure 16 presents the UND metric. This metric (Equa-
tion 4) indicates the percentage of abnormal traffic that is
erroneously classified as normal traffic. For cybersecurity ap-
plications, this metric reveals attacks that happened without
being detected by the system, making this metric more critical
than the FAR metric. Furthermore, in our imbalanced dataset,
if a model is biased towards classifying almost all traffic as
normal, this metric would show how biased the model is.

As shown in Figure 16, the offline results are small for
both types of attacks. The online performance is lower but
acceptable. This shows that the selected features can detect
DoS attacks even in an imbalanced dataset.

Figure 17 shows the ROC curve. An ROC curve defines
how well the model can separate samples from both classes.
This curve plots the trade‐off between sensitivity (or TP rate)
and specificity (1 – FP rate). Models that give curves closer to
the top left corner indicate better performance. Because the
ROC curve does not depend on the number of samples in each
class, the imbalanced issue does not affect its results. The
ANN algorithm shows excellent performance in detecting DoS
attacks in both scenarios (offline and online). For the RCI
attacks, our developed IDS shows excellent performance in the
offline evaluation and satisfactory performance in the online
evaluation.

For detection latency, we calculated the average time that
the proposed IDS detects the attacks in real time. As
mentioned, the IDS is connected to a port on the switch and
receives a copy of the network flow. Thus, we define latency as
the time between the occurrence of an attack and its detection
by our IDS. The average time to detect an attack is approxi-
mately 55 ms. This time is composed of feature extraction,
feature normalisation, and DL model analyses, as shown in
Figure 10.

7 | CONCLUSION

We have presented a flow‐based dataset to support IDS
research for SCADA systems.[43, 44] Furthermore, a flow‐
based IDS system using a DL algorithm is proposed. Two
different cyberattacks related to ICS/SCADA systems were
carried out in our SCADA system test bed. Then, the dataset

F I GURE 1 0 Online intrusion detection system framework evaluation
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was used to train and test the DL algorithms. The performance
of the IDS was evaluated on the SCADA network in both
offline and online modes.

The results show that the DL algorithms used in our IDS
and deployed on our SCADA test bed have excellent perfor-
mance during both offline and online phases. In the online
evaluation, the performance obtained during the DoS attacks
also showed reliable performance, close to the offline evalua-
tion. Meanwhile, for RCI attacks, the online performance was
lower than the offline performance. We attribute this differ-
ence to the unique characteristics of these attacks. More
specifically, the number of attack packets generated during the
RCI attacks is tiny compared with the DoS attacks. This was
done to mimic the real‐life scenarios in which DoS attacks are
more frequent than RCI attacks.

As future work, we plan to conduct more experiments with
RCI attacks and add new kinds of attacks (e.g., man‐in‐the‐

F I GURE 1 1 Architecture of the used
artificial neural network model

F I GURE 1 2 Rectified linear unit activation function

F I GURE 1 3 Sigmoid activation function

F I GURE 1 4 Accuracy results
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middle attack) to the dataset. Moreover, experiments using
unsupervised DL algorithms will be considered.
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