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ABSTRACT 
 
High definition video streams are gaining larger shares of 
the Internet usage for typical users on daily basis. This is an 
expected result of the current boom in the online standard 
and high definition (HD) video streaming services such as 
YouTube and Hulu. Because of these video streams’ unique 
statistical characteristics and their high bandwidth 
requirements, they are considered to be a continuous 
challenge in both network scheduling and resource 
allocation fields. In this paper we provide a statistical 
analysis of over 50 high definition video traces that 
resembles wide varieties of high definition video traffic 
workloads. We performed both factor and cluster analysis 
on our collection of video traces to support a better 
understanding of video stream workload characteristics and 
their impact on network traffic. Additionally, we compare 
and evaluate different modeling approaches for high 
definition videos traces.   
 

Keywords—Workload Characterization, Factor 
Analysis, Video Clustering, Multimedia Communications, 
Communication Networks. 

 
 

1. INTRODUCTION 
 
Web based video streaming websites open the doors to 
promising opportunities to distribute digital video contents 
to millions of people. Websites like YouTube [1] are now 
considered to be among the most daily accessed websites for 
Internet users. Such websites are now accounting for 27 
percent of the Internet traffic, rising from 13 percent in one 
year [3]. This surge in traffic percentage can be explained by 
considering the latest surveys, as they show that the 
percentage of U.S. Internet users watching streaming videos 
have increased from 81% to 84.4%, and the average time 
spent per month increased from 8.3 to 10.8 hours/month in 
just three months [4,5]. Additionally, several websites have 
started to offer access to TV shows and selected movies, e.g. 
Hulu[2] and Netflix[6], which increased the reliance of the 
daily Internet users on such websites, and augmented their 
expectations of the level of services and quality of delivery. 
All these reasons inspire network researchers to put more 
emphasis on handling such demanding traffic. 
Resource allocation and bandwidth control are dependent on 
their ability to predict and manage the demand of video 

streams. Therefore, the need of analyzing such challenging 
traffic, and possibly modeling it, is essential to allow better 
quality of service (QoS) support. 
Modeling video streams is a challenging task because of the 
high variability of the video frame sizes. Such variability has 
been emphasized with the introduction of high definition 
codec MPEG4-Part10, also known as advanced video codec 
(AVC) and H.264. AVC codec provides better performance 
and compression rate (i.e. lower mean values) than their 
predecessors. Yet at the same time, they result in higher 
variability rates in frame sizes[7].  
There have been several previous contributions that aimed to 
achieve a better understanding of the relationship between 
the behavior of the video traces and their impact on resource 
allocation. In [8], the authors presented a statistical and 
factor analysis study of 20 MPEG1 encoded video traces 
and the impact of such traffic on ATM networks. Similar 
approaches were presented in [9] with emphasis on video 
trace frame size distribution. The author in [10] performed a 
statistical analysis on four MPEG4-AVC encoded video 
traces with attention to the quantization effects on several 
statistical quantitative measurements and the correlation 
between video frames. In [11], the authors fitted one 
MPEG4-AVC encoded movie encoded with different 
quantization levels using Gamma density distribution 
function. In [7], the emphasis of the authors was to show the 
capabilities of the AVC standard versus its predecessor, viz., 
MPEG4-Part2.  
In this paper, we present our work of analyzing and 
modeling over 50 HD video traces that we have selected 
from YouTube HD section. We aim through this 
contribution to investigate the main statistical characteristics 
that define a HD video trace. Such identifying process is 
important for two main reasons: it helps in clustering video 
traces depending on a certain statistical criterion to help 
choose the correct traffic workload, and for other data 
mining tasks. Additionally, it helps define the main 
statistical attributes of video traces that should be considered 
to achieve a valid statistical model. In our analysis, we also 
investigate the applicability of several video models in our 
pursuit for a general and a simple model that does not 
require significant statistical knowledge.  
The rest of this paper is organized as follows: in the next 
section we discuss the methodology of selecting and 
encoding our collection of HD video traces. Section 3 
illustrates the steps taken to perform both factor and cluster 
analysis on the video traces. Section 4 compares different 
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video traffic models and their validity to model HD video 
traces.  Finally, section 5 concludes our paper. 
 

2. COLLECTING AND ENCODING HD VIDEO 
TRACES 

 
In order to provide a representative collection of video 
traces, we gathered over 50 YouTube HD videos [27]. The 
collected videos represent 15 different categories available 
to the site’s users. Each category is represented in our 
collection with three videos. Additionally, we have chosen 
an additional set of videos to widen the selected levels of 
motion and texture.  
To ensure common encoding settings for all the videos, we 
started by examining the videos encodings using MediaInfo 
[12] to determine the most common settings. Then, we 
confirmed our settings selection by refereeing to different 
encoding experts opinions [13]. Next, we converted the 
videos to their raw format (YUV420) and used JM reference 
software [14] to perform the encoding process using the 
common settings. The encoding procedure is both time and 
resources consuming process. The average time to encode 
one video is around 37 hours, and each video takes up to 
4GB in space when it is converted to its raw format. 
The selected common settings are shown in Table 1. We 
have chosen to use IDR (Instantaneous Decoding Refresh) 
frames since they allow better synchronization and seeking 
precision for the videos, which ultimately enhances the 
user’s experience. The IDR period has been chosen to be 24, 
which is equal to the chosen frames rate, allowing seeking 
precision up to one second. We chose to use two B frames 
with three reference frames to follow the recommendations 
in [13]. The quantization parameters have been chosen to be 
close to the default settings for the JM encoder. Parameter 
ProfileIDC defines the video profile, which, in this case, is 
set to high. This parameter, along with the LevelIDC 
parameter specifies the capabilities that the client decoder 
must have in order to view the video stream correctly. 
Parameter NumberBFrames specifies the number of B slices 
or frames between I, IDR and P frames. All the encoded 
video traces and their autocorrelation function (ACF) plot, 
partial autocorrelation function (PACF) plot, cumulative 
distribution function (CDF) plot, and their encoding process 
statistics are all available as a part of this contribution to the 
research community with all the used tools and scripts [27]. 
 
     Table 1. Encoding Parameters for the Selected YouTube Video 

Collection 
Encoding Parameter Value 

FrameRate 24 
Width 1280 

Height 720 
ProfileIDC 100 (High) 
LevelIDC 40 (62914560 samples/sec) 
NumberBFrames 2 
IDRPeriod 24 
NumberReferenceFrames 3 
Quantization Parameters (QP) I=28, P=28,B=30 

3. FACTOR AND CLUSTER ANALYSIS OF VIDEO 
TRACES 

 
In this section we discuss the steps taken to perform a full 
statistical analysis of the collected video traces in order to 
achieve a better understanding of the main factors that can 
be used to represent a video trace in order to develop a 
representative statistical model.  
Multivariate analysis is used to reveal the full structure of 
the collected data, and any hidden patterns and key features 
[15]. Multivariate analysis is used especially when the 
variables are closely related to each other, and there is a 
need to understand the relationship between them. We have 
computed the following statistical quantitative values for 
traces frame sizes: mean, minimum, maximum, range, 
variance, standard deviation, the coefficient of variance, and 
the median value. In addition, we computed the Hurst 
exponent value, as shown in equation 1, which indicates the 
video sequence’s ability to regress to the mean value, with 
higher values indicating a smoother trend, less volatility, and 
less roughness. Its value varies between 0 and 1. This is also 
an indication of the long range dependence (LRD) between 
the frames. 
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where xi is the frame size at index i, x  is the mean frame 
size, and N is the number of frames in the trace. We also 
computed the skewness value that represents the symmetry 
of the observed distribution around its center point as 
illustrated in equation 2.  
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here std is the standard deviation of the frames sizes. 
Additionally, we computed the kurtosis value, which is an 
indication whether the observed distribution is peaked or flat 
relative to a normal distribution. The kurtosis equation is 
illustrated below: 
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As Table 2 shows, the collected videos represent a 
statistically diverse data samples. As mentioned before, the 
video frame sizes variance is considerably substantial. The 
table shows the most important variables that have been 
collected. We noticed through our preparation analysis that 
min variable does not contribute to the total variance 
significantly, and thus it was disregarded. Both max and 
range, and variance and standard deviation pairs are almost 
identical. We picked range and variance to represents the 
two pairs respectively. In the next subsections, we will 
discuss the methodology and results of performing both 
factor and cluster analysis. 



 
 

 Table 2. Range of Statistical Values for the Collected Video Traces 
 Mean Range Variance Hurst Coefficient of Variance Median Skewness Kurtosis 

Max 83340.43 1198416 13767760363 0.902836 3.9860815 62748 6.58066 61.34631 
Min 9782.01 65576 154362485 0.498937 0.6875022 448 0.2287191 -1.643709 

 
3.1 Principal Component Analysis  
One of the most common factor analysis methods is 
principal component analysis (PCA), where a group of 
possibly related variables are analyzed and then reduced to a 
smaller number of uncorrelated factors. These factors are 
linear combinations of the analyzed variables. By 
performing this process, we aim also to minimize the 
number of variables to represent a video trace [15].  
 

Table 3. Correlation Between The Selected Variables 
 Mean Range Var Hurst c.var Median Skew kurt 

Mean 1 0.48 0.73 0.48 -0.40 -0.9 -0.36 -0.23 
Range 0.48 1 0.74 0.34 0.19 0.25 0.51 0.6 
Var 0.73 0.74 1 0.36 0.13 0.41 0.13 0.14 
Hurst 0.48 0.34 0.36 1 -0.44 0.41 0.25 0.17 
c.var -0.40 0.19 0.13 -0.44 1 -0.56 0.71 0.51 
Median -0.9 0.25 0.41 0.41 -0.56 1 -0.49 -0.33 
Skew -0.36 0.51 0.13 0.25 0.71 -0.49 1 0.93 
Kurt -0.23 0.6 0.14 0.17 0.51 -0.33 0.93 1 

 
Using factor analysis we obtained the smallest number of 
variables to represent each video trace. Table 3 shows the 
correlation between the selected variables. These factors 
collectively represent the majority of the samples variance. 
The importance of each factor is represented by its 
eigenvalue. To determine the number of factors to extract 
we used Kaiser-Guttman rule [16]. We excluded the factors 
with eigenvalue less than 1. We supported our selection by 
performing the Scree test [17], where we plotted the 
relationship between the number of factors and their 
cumulative contribution to the total variance of the data set, 
and we looked for either large spaces between the plotted 
variables or a knee in the graph to determine the number of 
factors. Our analysis resulted in choosing two factors with 
the following eigenvalues:  λ1 = 3.51, and  λ2 = 2.82. These 
factors accounts for 79% [(λ1 + λ2) / 8] of the total 
standardized variance. We assured that the number of 
factors is sufficient to explain the inter-correlations among 
variables by performing several non-graphical tests [18]. To 
simplify the factor structure and spread out the correlations 
between the variables and the factors (their loadings values) 
as much as possible, we performed both orthogonal and 
oblique rotations on the factors [19]. We chose varimax 
orthogonal rotation as it gave the best results. As shown in 
Fig. 1 the two significant groups are the mean and skewness 
groups. Table 4  shows the loadings values for both varimax 
rotated and un-rotated factors.   

Table 4. Estimated and Rotated Factors Loadings 
 Estimated Rotated (varimax) 

Variable F1 F2 F1* F2* 
Mean 0.84 0.46 0.93 - 
Range - 0.95 0.73 0.62 

Variance 0.39 0.80 0.84 - 
Hurst 0.62 - 0.64 - 
C. Var -0.75 0.35 - 0.77 
Median 0.87 - 0.77 -0.46 

Skewness -0.75 0.62 - 0.97 
Kurtosis -0.62 0.67 - 0.91 

As can be noticed, the rotated factors are better spread out 
and simpler to interpret.  From Table 4 we can note that the 
first factor F1* defines mainly mean and variance values. 
The second factor defines mainly skewness and kurtosis 
values. We chose mean to represent the first factor since it 
has the highest load. We chose kurtosis as a representative 
of F2* since it has the lowest correlation between it and the 
mean (-0.23). This analysis shows the importance of 
skewness and kurtosis in HD videos traces. These variables 
were considered irrelevant in previous video analysis [6]. 
This realization can be explained by the dependence of these 
variables on the standard deviation that accounts for a 
significant proportion of the total variance of HD videos 
traces.    

 
Fig. 1. Scatter Plot of Varimax Rotated Factors F1* and F2* in the 

Space of the Two Principal Components  
 
3.2 K-means Clustering  
We have demonstrated that the selected two factors are 
sufficient to characterize the movie traces.  The second step 
of our analysis is to group the collected video traces into 
clusters.  We used one of the most popular clustering 
methods: k-means clustering algorithm [20]. K-means 
algorithm achieves clustering by minimizing the within-
cluster sum of squares as shown in equation 4: 


= ∈

−
k

i Sx
ijs

ij

x
1

2
minarg μ                   (4) 

where xi is the video trace at index i, k is the number of sets 
(k<n , n:number of video traces), Si is the i-th set, and µi is 
the mean of Si. 
Our next step is to estimate the number of clusters or groups 
to consider for k-means clustering. PCA helps give an 
insight of how many clusters the data samples can be 
grouped into [21]. In our case, PCA suggests that we need 
two clusters. In order to verify the analysis results from 
PCA, we proceeded with computing the within-cluster sum 



 
 

of squares for different number of clusters. Our aim is to 
select the minimum number of clusters that allow the 
minimal possible value for the within-cluster sum of 
squares. By plotting these values to represent a graph similar 
to the scree test,  the large spaces between the plotted 
variables and the graph possible knee indicates the possible 
values: two, three, and four clusters as shown in the Fig. 2 
(a). To further investigate the best possible number of 
clusters to use, we performed a hierarchal clustering to 
identify the number of clusters using Ward's method [20]. 
As shown in Fig. 2(b), the video traces are divided into two 
main clusters. Grouping into two clusters choice was 
verified by performing silhouette validation method [22]. 

 
 (a) Within Groups Sum of Squares vs. Number of Clusters 

 
 (b) Hierarchal Clustering Result 

 
Fig. 2. Determining Number of Clusters using Scree Test and 

Hieratical Analysis 
  

By performing k-means clustering we grouped the video 
traces into 2 clusters. Table 5 shows the two chosen 
principal components corresponding to the centriods of the 
two clusters, and the two clusters main members. Figure 3 
shows the distribution of video groups over the two clusters. 
  

Table 5. Clustering Results Using K-Means Clustering 
Variables Cluster 1 Cluster 2 

Mean 59251 32582 
Kurtosis 12.028829 9.099512 
No .of Elements 13 39 
Main Video 
Groups 

Films, People and 
Blogs, Sports, 
Educational 

Films, Music, 
News, Comedy, 
Cars 

In summary, video traces that belong to cluster 2 have 
significantly lower mean values, and have considerably low 
peaks compared to normal distribution, and lighter tails as 
indicated by their low Kurtosis values. 

 
Fig. 3. Distribution of Movie Groups over The Two Clusters 

In addition, we notice the following: films category video 
traces are spread across both clusters. Most blogs and sport 
category videos are characterized as peaky video traces 
because of their content; news and comedy videos are less 
peaky and have lower means than other movies.  
In this section, we demonstrated our results of performing 
both factor and cluster analysis on our collection of video 
traces. Both methods of analysis give us a better 
understanding of the distribution of the movie traces and the 
key statistical attributes.  
 

4. MODELING HD VIDEO TRACES 
 
In this section, we discuss and compare three statistical 
models to represent HD video traces. Several models to 
represent VBR (Variable Bit Rate) MPEG traffic have been 
proposed in the last decade. Some of the models proposed 
are based on Markov chain models, which are known for 
their inefficiency in representing the LRD characteristics of 
MPEG traffic [28, 29]. Due to the high influence of LRD, 
multiplicative processes have been considered like 
Fractional ARIMA (FARIMA) which have been shown to 
be accurate, computationally demanding and provide 
marginal improvements over ARIMA[30]. Our aim is to 
select a simple to implement, accurate and applicable model 
for all video traces without the need of significant statistical 
background. The chosen model should not require video-
specific complex and tedious steps. The model should be 
able to not only represent video frame size distribution, but 
also the correlation between the frames. These attributes are 
important to achieve the desired results and to allow the 
analysis of the 52 video traces. We picked three modeling 
methods:  autoregressive (AR) model, autoregressive 
integrated moving average (ARIMA) model [24], and 
simplified seasonal ARIMA model (SAM) [23]. All these 
models consider Akaike's Information Criterion (AIC) as 
their optimization goal. AIC is defined as:   

)]/[ln(2 nRSSnkAIC +=                   (5) 

here k is the number of parameters, n is the number of the 
video frames, and RSS is the residual sum of squares.  AIC 



 
 

defines the goodness of fit for the models, considering both 
their accuracy and complexity defined by their number of 
parameters. Lower AIC values indicate better models in 
terms of their validity and simplicity. Below is a short 
description of each modeling method. 
 
4.1 AR Modeling with Maximum Likelihood Estimation 
Autoregressive fitting takes into consideration the previous 
values of the fitted trace.  An autoregressive model of order 
p can be written as: 
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where φi is the i-th model parameter, and ε t is white noise. 
We use maximum likelihood estimation (MLE) to estimate 
the model parameters of the AR model.  Using AR to fit the 
video traces is considerably simple process, but it does not 
always yield accurate results. Additionally, each video 
traces has its own set of parameters in terms of their 
numbers and their values.  
 
4.2 ARIMA Modeling 
Autoregressive integrated moving average model is a 
mathematical class model with both autoregressive and 
moving average terms. Moving average (MA) terms 
describe the correlation between the current value of the 
trace with the previous error terms. The integrated or 
differencing part of the model can be used to remove the 
non-stationarity of the trace. ARIMA is usually referred as 
ARIMA(p,d,q) where p is the order of the autoregressive 
part, q is the order of the moving average part, and d is the 
order of differencing. ARIMA model can be written as:   
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where L is the lag operator, and θi is the i-th moving average 
parameter. We used auto.arima statistical method from 
forecast package [24], which implements a unified approach 
to specify the model parameters. This approach also takes 
into consideration the seasonality of the trace. This approach 
also results in a separate set of parameters for each video 
trace in terms of their numbers and their values. 
    
4.3 SAM Model 
SAM  is a mathematical model based on Seasonal ARIMA 
(SARIMA) models [23]. SARIMA models aim to achieve 
better modeling by identifying both non-seasonal and 
seasonal parts of data traces. SARIMA is described as:   

 ( ) ( )sQDPqdpSARIMA ,,,, ×=               (8) 
 

where P is the order of the seasonal autoregressive part, Q is 
the order of the seasonal moving average part, D is the order 
of seasonal differencing, and s denotes the seasonality of the 
series. SAM as SARIMA model can be written:  

( ) ( )zSAM 1,1,11,0,1 ×=                            (9) 

where z is the autocorrelation function (ACF) lag 
seasonality, in our case this is equal to the frames rate. SAM 
provides a unified approach to model video traces encoded 
with different video codec standards using different 
encoding settings [25]. Although the model is presented to 
model mobile video traces, we investigate its ability to 
model HD video traces with higher resolutions. SARIMA 
models require a certain degree of analysis to identify the 
model parameters number and their values. SAM, on the 
other hand, has only four parameters, and therefore each 
model is represented with only four values. The values the 
parameters are determined using Nelder-Mead method [26]. 
The four parameters are: autoregressive, moving average, 
seasonal autoregressive, and seasonal moving average. 
Therefore, using SAM simplifies the analysis process that is 
usually required for seasonal series.   
 
4.4 Modeling Results 
After performing the modeling analysis on our collection of 
52 HD video traces, we evaluate the achieved results by 
simply comparing the sum of the AIC values for all the 
modeled video traces. We also calculated the number in 
which each model has scored the best AIC for a certain 
video trace. The results are shown in Table 6. It can be noted 
that SAM achieved the best AIC results, while AR and 
ARIMA came in second and last place respectively.    

 
Table 6. Comparison between AR, ARIMA and SAM using AIC  

  AR ARIMA SAM 
Total AIC 3473929 3492401 3344490 

No. of Best AIC 6 3 43 
 
Additionally, we performed several graphical comparisons 
for all the video traces by comparing the original video 
traces, their auto correlation function (ACF) plots, and their 
empirical cumulative distribution function (ECDF) plots to 
ones achieved by the different models. Figure 4 shows an 
example of one of the compared video traces. As we notice, 
SAM has better results and represents the traces statistical 
characteristics better than the other two models. For this 
example, modeling using AR required 12 parameters, using 
ARIMA required two AR parameters and five MA 
parameters, and using SAM required four parameters. 

 
(a) Trace Comparison (frames between 1500-1600) 



 
 

 
(b) ACF Comparison (first 50 lags) 

 
(c) ECDF Comparison 

Fig. 4. Modeling Comparisons for AR, ARIMA, and SAM 
 

All graphical comparison results for the HD video traces are 
also available through our website [27] as a part of this 
contribution. 
 

5. CONCLUSIONS   
In this paper, we presented our results of analyzing more 
than 50 HD video traces using both factor and cluster 
analysis. We showed that skewness and kurtosis statistical 
variables are principal components to HD video traces. We 
illustrated and compared using both AIC values and 
graphical comparisons the capabilities of three mathematical 
models. SAM's capability to accurately model HD video 
traces has been proven, and it provided better results than 
AR and ARIMA models. Finally, as a part of this 
contribution: all the video traces, tools, and graphical 
comparisons  are made available to the research community. 
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